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In the first lecture we learned how the fractional diffusion equation can be derived as the continuum limit of
a random walk with "long jumps".  That is, a random walk where the jump size is drawn from a probability
distribution with infinite variance.  Actually, this is just one kind of fractional diffusion equation.  Other variants
are possible, and correspond to different assumptions about the jump lengths.  For example, if the jump
length distribution is not symmetric about zero, different kinds of "one-sided" fractional operators can be
defined.  We will concentrate on the symmetric case, which as we saw, leads to the fractional Laplacian

operator .  So far we only considered this operator in one dimension, and on an infinite domain.  Its
definition follows the usual convention for computing a function of a self-adjoint ("positive definite") operator.
That is, it's defined by its action in Fourier space

.

In fact, if we interpret  as the n-dimensional Fourier transform, and x and k as vectors in  with  being
the usual Euclidean norm, this definition holds for any number of space dimensions.  So there is nothing
much more to say about that.

What about on finite domains?  On finite domains we also have boundary conditions, which must somehow
be part of the definition of the operator.  There is lots of current research on the fractional Laplacian on
finite domains, with various choices of boundary conditions.  Here we will focus on the simplest case: one-
dimensional domain  with homogeneous Dirichlet boundary conditions.

In this case, we can use the spectral decomposition of the Laplacian  to define its fractional power.  To
find the eigenvalues and eigenfunctions of the Laplacian, we need to solve the equation

 

subject to the homogeneous Dirichlet boundary conditions

.

Here λ is the eigenvalue, and φ is the eigenfunction.  The solutions are found to be

 and  for 
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Before definining the fractional Laplacian, let's review some key points about this spectral decomposition.
Since the operator is self-adjoint, the eigenfunctions are orthogonal: 

and any reasonable function  defined on  can be expressed in terms of these eigenfunctions as

with the coefficients  found by integration of u against the eigenfunctions

So, the effect of the Laplacian  on a function u is seen to be

The fractional Laplacian on finite domain is then defined by

Notice that this definition depends on the particular eigenfunctions , and so it's specific to the choice of

boundary conditions.  Other boundary conditions (like Neumann conditions) would have different .

Analytical solution for the fractional diffusion equation

We remember from lecture 1 there was no analytical solution for the fractional diffusion equation

on an infinite domain, with initial condition .  The solution is known in Fourier space though, and
we recognised it as the characteristic function of the α-stable distribution.  We won't go any further with this
idea.

On a finite domain, we can find the analytical solution, for arbitrary initial condition, by using the eigenfunction
expansion.

We write the solution  in terms of the eigenfunctions with time-varying coefficients

Substituting in the PDE, we simplify
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and find the ODE for the coefficients

.

The general solution is

.

To match an arbitrary initial condition

requires

and so the solution to the PDE is

Let's try an example.  We'll take the interval  with homogeneous Dirichlet boundary conditions, and

initial condition .  The diffusivity is  and we'll plot solutions at time  for
different values of α.

Lec2_Analytic_Solution_FDE
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You can see the different solution profiles for various values of α, but all solutions are forced to zero on the
boundary.  If you wanted to derive this problem using a random walk model like in lecture 1, it would involve
"killing" the particles once they reached  or .  We won't down this path though.

It's also worth noting that the solutions for different α values aren't directly comparable even
if they use the same value of D.  That's because the dimensions of D depend on α.  For the

equation  to be dimensionally correct, D must have dimensions of .

This was also clear from our derivation in lecture 1, where D was defined as the limiting value of  

(remember that  has dimensions of length).

Numerical scheme for fractional diffusion-reaction equations

Now we will move on to fractional diffusion-reaction equations by including a nonlinear source term

.

The analytical solution is not available any more.  Instead we need to derive a numerical method.  The idea is
to build a matrix approximation to the Laplacian operator .  Let's call it .  We can use finite differences,
or any similar method.  Then the PDE is discretised in space by

.

Remember that fractional powers of a matrix are defined through its spectral decomposition (by finding its
eigenvalues and eigenvectors).  So this formulation is the discrete equivalent of our fractional diffusion-
reaction equation.
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We will discretise in time in the simplest way, treating the diffusion term implicitly and the source term
explicitly.  (If you haven't studied numerical methods for PDEs before, the reason to treat the diffusion term
implicitly is so the method produces reliable answers whatever time step size τ is used.)

.

Rearrange to get 

.

Since the operator  is self-adjoint, the matrix  will be symmetric positive definite, and so its
diagonalisation is just

where  has the orthonormal eigenvectors as columns, and the matrix of eigenvalues . Then the

matrix power  can be computed as 

.

 From this diagonalisation, the solution  can be calculated as  

. 

So now we have a numerical scheme based on the diagonalisation to advance the solution in time.

A fast algorithm for computing 

On a uniform grid with N divisions, for the interval , the finite difference matrix is

just , where  is the spacing between nodes.  This matrix has
some very nice properties for our numerical method.  In fact, we already know its diagonalisation. The
eigenvalues are 

and the entries of the eigenvector matrix are

The connection between these formulas, and the eigenvalues and eigenfunctions of the operator  are

interesting, but we won't go further into that.  Let's take these formulas as known.  Let  at
each time step. Then computing  at each time step would be
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which is really the 3 steps:

1. Let 
2. Scale  element-wise by the values 
3. Let  

Now the products  and  are quite interesting.  Actually from the formula for  it's clear that  is

symmetric ( ) , so  and we might as well just look at .  Written out in full, the ith element

in  is

This calculation already has a name: it's called the discrete sine transform.  It's closely related to the
discrete Fourier transform, and indeed it can be computed using the famous FFT algorithm (Fast Fourier
Transform) in only operations.  Altogether, this means we have a wonderfully efficient algorithm to
compute  at each time step as

,

where  and  are MATLAB's built-in functions for computing discrete sine transform and its inverse
transform. For Neumann boundary conditions, the formulae for eigenvalues and eigenvectors of  can

be found here, and the solution  can be computed using discrete cosine transform.  and  are the
MATLAB's functions for this purpose.

Now, Let's have a look at our MATLAB examples.

Example 1: Solve the fractional diffusion equation numerically on the interval  under zero Dirichlet

boundary conditions and initial condition . The diffusivity  and the final time .
Introduce a mesh with Ndivisions in space and n steps in time:

, , where , and

,  where .

Lec2_Numerical_Solution_FDE_Dirichlet
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Example 2: Solve the fractional diffusion-reaction equation with a Fisher source term , under

zero Neumann boundary condition and initial condition .  and .

Lec2_Numerical_Solution_FDRE_Neumann
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Conclusions for this lecture: If you're solving a 1D fractional diffusion-reaction problem, it is quite tempting to
use this finite difference discretisation because of the fast algorithms for discrete sine and cosine transforms.
It even generalises to higher dimensions.  But if you need a nonuniform mesh, or if your domain is irregular,
then the fast algorithms can't be used anymore.

In the next lecture we'll look at other ways of computing  that apply in more general situations.
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