
Lecture 3 The Preconditioned Lanczos Method for Solving
Fractional Diffusion-Reaction Equations

Dr Qianqian Yang
AMSI Winter School 2019

In Lecture 2, we developed a numerical scheme for solving fractional diffusion-reaction equations. Recall the
scheme:

.

Remember that is the matrix representation of the standard Laplacian and can be obtained from
finite difference, finite element or finite volume methods under some boundary conditions. Although is

sparse, will be dense. When is large, the direct computation of using diagonalisation is very

expensive! Furthermore, what we want is not , what we really want is the action of this dense matrix
applied to a vector. This motivates us to write our numerical scheme in terms of matrix-function-vector
product at each time step

 .

Lanczos approximation
The prevailing method in the literature for approximating the matrix-function-vector
product for symmetric is the Lanczos approximation

where is the Lanczos decomposition, is symmetric and tridiagonal, and the

columns of form an orthonormal basis for the Krylov subspace

Don't panic! Let's see what this means and how to form such a decomposition.

The clever idea behind this is that we want to project our large problem onto the Krylov subspace and find
the approximate solution of our problem in that subspace. If the approximate solution is not good enough,
we increase the dimension of the Krylov subspace by 1 and try again. Here, the dimension of a Krylov
subspace m is much smaller than our original problem (i.e.). When is large, we will have problems
to diagonalise , but we won't have any problem to diagonalise a much smaller symmetric and tridiagonal

matrix , which is the projection of onto the Krylov subspace.

1

https://en.wikipedia.org/wiki/Krylov_subspace

Now, we need to be careful. There is an issue with using the basis for the Krylov
subspace, which is that those vectors will soon become almost linearly dependent according to the theory
of the power method. This will make it very difficult numerically to extract the new information added to the
subspace when we expand our basis by each new vector.

The way around this difficulty is to orthogonalise each new vector against all the previous vectors as soon as
we compute it.

Let's see how it works. We will build an orthonomal basis for the Krylov subspace . To illustrate the

idea, let's say: is a 20x20 symmetric matrix and is a random vector.

clear
n = 20;
A = gallery('tridiag',n);
spy(A) % exhibits the locations of the nonzero entries

rng('default'); % to ensure you produce the same random vector
b = rand(n,1)

b = 20×1
 0.8147
 0.9058
 0.1270
 0.9134
 0.6324
 0.0975
 0.2785
 0.5469
 0.9575
 0.9649

2

https://en.wikipedia.org/wiki/Power_iteration

Let's normalise our first vector by dividing by its length. We'll record the result as a single column in a
matrix .

V(:,1) = b / norm(b)

V = 20×1
 0.2537
 0.2821
 0.0395
 0.2844
 0.1969
 0.0304
 0.0867
 0.1703
 0.2982
 0.3005

Now, we'll call our next vector, for the time being, . We generate the next vector by multiplying the previous
vector by .

w = A * V(:,1)

w = 20×1
 0.2253
 0.2709
 -0.4874
 0.3324
 0.0790
 -0.2229
 -0.0272
 -0.0443
 0.1256
 0.2537

Now though, before we include it in the matrix , we'll orthonormalise it against the first vector. That is, we

subtract away its projection onto and scale the result by its length.

Since we expect they will be useful, we'll record the two intermediate scalars we needed in these
calculations: and . Let's store them in an array T.

% orthogonalise
T(1,1) = dot(w, V(:,1)), w = w - T(1,1) * V(:,1)

T = 0.5711
w = 20×1
 0.0804
 0.1098

3

 -0.5100
 0.1699
 -0.0334
 -0.2402
 -0.0768
 -0.1416
 -0.0447
 0.0821

% normalise
T(2,1) = norm(w), V(:,2) = w / T(2,1)

T = 2×1
 0.5711
 1.0178
V = 20×2
 0.2537 0.0790
 0.2821 0.1079
 0.0395 -0.5011
 0.2844 0.1670
 0.1969 -0.0328
 0.0304 -0.2360
 0.0867 -0.0754
 0.1703 -0.1391
 0.2982 -0.0439
 0.3005 0.0806

We can now easily confirm that we have an orthonormal basis for . The columns

of must be mutually orthogonal, and each have unit length.

V'*V

ans = 2×2
 1.0000 -0.0000
 -0.0000 1.0000

Great! Now, just automating this process to loop m times, we have derived the Lanczos algorithm.

m = 8;
for j = 2:m
 w = A*V(:,j); % Compute next vector

 % Orthogonalise against two previous columns
 T(j-1,j) = T(j,j-1); % T is symmetric
 w = w - T(j-1,j) * V(:,j-1); % subtract the projection on V(:,j-1)
 T(j,j) = dot(w, V(:,j));
 w = w - T(j,j) * V(:,j); % subtract the projection on V(:,j)

 % Normalise
 T(j+1, j) = norm(w);

 % Record the new vector in V

4

 V(:, j+1) = w / T(j+1, j);

end
V, T

V = 20×9
 0.2537 0.0790 -0.4564 -0.2552 -0.1301 0.3038 0.2481 0.1496
 0.2821 0.1079 0.0820 0.4733 0.0447 0.0539 -0.3968 -0.2769
 0.0395 -0.5011 -0.0345 0.2308 -0.4348 -0.0427 0.0331 0.2796
 0.2844 0.1670 0.1664 0.0389 0.0877 0.3497 0.1352 0.2437
 0.1969 -0.0328 -0.1252 -0.4543 -0.0248 -0.0274 -0.5513 -0.1344
 0.0304 -0.2360 0.2345 0.0062 0.4165 0.0670 0.0704 0.2882
 0.0867 -0.0754 0.3661 -0.1653 -0.3576 -0.4246 0.1980 -0.0620
 0.1703 -0.1391 0.0276 0.0088 0.4464 0.0101 0.2859 -0.2313
 0.2982 -0.0439 -0.2445 -0.3066 0.0082 -0.2335 0.0103 -0.1388
 0.3005 0.0806 0.2396 0.1335 0.0940 -0.1044 0.0269 -0.0181

T = 9×8
 0.5711 1.0178 0 0 0 0 0 0
 1.0178 2.5668 0.9003 0 0 0 0 0
 0 0.9003 1.8564 0.8570 0 0 0 0
 0 0 0.8570 1.8080 1.0080 0 0 0
 0 0 0 1.0080 2.7397 1.0166 0 0
 0 0 0 0 1.0166 1.6644 0.7269 0
 0 0 0 0 0 0.7269 2.0842 1.0363
 0 0 0 0 0 0 1.0363 1.6394
 0 0 0 0 0 0 0 0.9389

norm(V'*V - eye(m+1,m+1),'inf') % check orthogonality

ans = 1.4256e-14

Note here that is actually an tridiagonal matrix. The entry, called , is the norm

of our final vector . To make this disctinction clear, we denote the matrix resulting from removing

the final row as .

Tm = T(1:m,1:m);

Before we continue, let's just confirm we have correctly computed the Lanczos
decomposition .

e = zeros(m,1); e(m) = 1;
norm(A*V(:,1:m) - V(:,1:m)*Tm - T(m+1,m)*V(:,m+1)*e')

ans = 3.3975e-16

Great! Let's save the algorithm above as a MATLAB function lanczos.m.

The significance of this matrix is that it is the projection of the matrix onto the Krylov

subspace . So, it's our "best approximation" of in this space.

For example, we can find the eigenvalues of and they should approximate those of , in some sense.
Our main focus will be computing matrix functions, but functions of matrices are closely connected to their

5

eigenvalues. And actually the Lanczos method is a popular method for calculating eigenvalues anyway, so
let's see how it performs.

lamA = eig(A); lamT = eig(Tm);
figure;
plot(lamA,0,'bo','MarkerSize',12); % blue circles: e.vals of A
hold on
plot(lamT,0,'r+','MarkerSize',12) % red crosses: e.vals of Tm
set(gca,'ytick',[]);

We see that the eigenvalues of did a reasonable job of representing the spectrum of , especially those
eigenvalues that are near the edge of the spectrum. There is more theoretical analysis on which eigenvalues
the Lanczos method converges to, but it is beyond the scope of this lecture.

Matrix-function-vector product approximation
Now we are ready to use this Lanczos decomposition to approximate . Remember we "project" this

problem onto the Krylov subspace. The m-dimensional projection of is as we already mentioned, and

the m-dimensional projection of is just . So our best approximation using the Krylov subspace

would be to calculate and then promote the result back to : .

Now let's approximate a matrix-function-vector product using the Lanczos method. We
will take the tridiagonal matrix with 1000 elements representing the discrete Laplacian in 1D. Let's try the

standard case, first.

clear;
n = 1000; alpha = 2;
A = gallery('tridiag',n); b = rand(n,1);

6

m = 20; % let's just try if m=20 is resonalble for this matrix
[V, T, beta] = lanczos(A,b,m); % beta is norm(b)
fAb_exact = expm(full(A)^(alpha/2))*b; % using MATLAB's function to compute matrix exponential
e1 = [1;zeros(m-1,1)];
fAb_lanczos = beta * V(:,1:m) * expm(T(1:m,1:m)^(alpha/2)) * e1;
rel_err = norm(fAb_exact - fAb_lanczos) / norm(fAb_exact)

rel_err = 3.4482e-15

Wow, we get machine precision for , which is much less than our full dimension . Let's take a
closer look at how the error reduces with m for this example.

for k = 1:m
 err(k) = norm(fAb_exact - V(:,1:k) * expm(T(1:k,1:k)^(alpha/2)) * [beta;zeros(k-1,1)]) / norm(fAb_exact);
end
figure; semilogy(err)
xlabel('m'); ylabel('Relative error')

Great! We see that the Lanczos method converges to machine precision in under 20 iterations when
computing .

Next, what if , do you think our Lanczos algorithm would still work well? Unfortuantely, this is what you

will see when computing with . The Lanczos method converges very slowly. To
get to machine precision, you need really big m. That's not what we want.

7

The problem is that our function is not smooth anymore, for . It has problems at the
origin. The function is defined there, but its derivatives are not. And like most approximation theory, when
derivatives don't behave well, the convergence is much slower. In this case, it's the smallest eigenvalues of
our matrix (closest to zero) that cause us the most problems.

Preconditioned Lanczos Method
To accelerate the Lanczos method, we need a preconditioner. The idea is to construct a matrix (the

preconditioner) and work with the matrix function rather than itself. The matrix should

remove the eigenvalues that cause us problems, so that is more accurate to compute than ,

but at the same time there must be a known relationship between and .

Baglama et al. (1998) and Erhel et al. (1996) have both proposed the preconditioner taking the form

where , , and are formed by the k smallest

eigenvalues and eigenvectors of the matrix .

Note that the product has the same eigenvectors as but its k smallest eigenvalues are all

mapped to . Hence, this preconditioner eliminates the influence of the k smallest eigenvalues on the
convergence of the Lanczos method. The important observation at this point is the following relationship

between and

.

8

https://epubs.siam.org/doi/abs/10.1137/S1064827596305258
https://www.sciencedirect.com/science/article/pii/037704279500047X

where . If is symmetric, then so is . Hence, we can apply the standard Lanczos

decomposition to with the new vector . In fact, we can show that , so

in practice, we don't need to form or and multiply by , we can just simply build the Lanczos

decomposition using with the new vector .

Now, let's modify our code above to approximate using a preconditioned Lanczos
method.

clear;
n = 1000; alpha = 1.5;
A = gallery('tridiag',n); b = rand(n,1);
fAb_exact = expm(full(A)^(alpha/2))*b; % using MATLAB's function to compute matrix exponential
m = 50; % size of Krylov subspace
for kk = 0:20:100 % number of smallest e.values to be shifted
 [Qk,Lk] = eigs(A,kk,'smallestabs'); lamk=diag(Lk); % compute kk smallest e.pairs
 term1 = Qk*diag(exp(lamk.^(alpha/2)))*(Qk'*b);
 bhat = b - Qk*(Qk'*b);
 [V, T, beta] = lanczos(A,bhat,m); % apply Lanczos to the new vector bhat
 e1 = [1;zeros(m-1,1)];
 fAb_lanczos = beta * V(:,1:m) * expm(T(1:m,1:m)^(alpha/2)) * e1;
 fAb = term1 + fAb_lanczos;
 kk, rel_err = norm(fAb_exact - fAb) / norm(fAb_exact)
 %norm(V'*V-eye(m+1,m+1),'inf') % check orthogonality
end

kk = 0
rel_err = 6.5022e-05
kk = 20
rel_err = 1.0765e-06
kk = 40
rel_err = 4.4896e-08
kk = 60
rel_err = 1.7744e-09
kk = 80
rel_err = 7.6717e-11
kk = 100
rel_err = 3.6999e-12

With the size of the Krylov subspace fixed, we can see how the deflated preconditioner help to improve the
rate of convergence of the Lanczos method.

We will leave the computation of our solution as a matrix function vector product

as Tutorial tasks.

9

