

2023 Winter Research Project Description

Project title:	Develop a Matlab app/toolbox to automate optimisation of fitted two-dimensional Electron Paramagnetic Resonance
Project duration, hours of	Duration of the project, 4 weeks during Summer Vacation.
engagement & delivery mode	Hours of engagement must be between 20-36hrs per week
Description:	HYSCORE is a two-dimensional EPR technique used to measure electron- nuclear couplings to determine molecular structure around a paramagnetic centre. The couplings are extracted by simulating the HYSCORE spectrum by adjusting the parameters of a spin Hamiltonian model. This project will develop a toolbox or app to automate the optimization of the parameters. Software will be developed in MatLab and various optimisation algorithms can be investigated from non-linear least squares to AI.
Expected outcomes and deliverables:	Understanding of nuclear magnetic resonance techniques Programming skills in Matlab Data analysis skill – particularly fitting simulated data to experiment data
Suitable for:	The project would suit a second or third year student interested in computer programming and applying the techniques to systems in biology and materials science.
Primary Supervisor:	Associate Professor Jeffrey Harmer
Further info:	E jeffrey.harmer@cai.uq.edu.au W http://www.cai.uq.edu.au/harmer