2024 Summer Research Project

Project title:	Deep learning-based myocardial tissue segmentation for diagnosing
	cardiac sarcoidosis in patients
Project duration,	Project duration: 6 weeks.
hours of	
engagement &	Hours of engagement: 36hrs per week
delivery mode	Delivery mode:
	The applicant is expected to be on-site for the project.
Description:	The aim of this project is to employ deep learning methods for improved
•	segmentation of cardiac muscle tissue in positron emission
	tomography/computed tomography (PET/CT) scans of patients with cardiac
	sarcoidosis (CS).
	In cardiac sarcoidosis tiny collections of immune cells form small clusters of
	inflammation in the heart tissue, which can interfere with normal
	functioning. As a result of this inflammatory condition, patients may
	PET/CT imaging is currently in routine clinical use for assessing the amount
	of inflammation in the heart in CS patients. For this purpose, a specific
	radiotracer (i.e., fluorodeoxyglucose (FDG)) is injected. The uptake pattern
	of FDG in different parts of the tissue forms a marker for glucose
	metabolism, potentially helping to identify any abnormalities.
	Literature suggests pessible nitfells of interpretation related to normal
	natterns of cardiac EDG untake related to diet, which can change the way
	the heart metabolises simple sugars such as FDG (which is very similar to
	glucose). For example, guidelines recommend low carbohydrate high fat
	diets with fasting to suppress such uptake. However, adequacy of dietary
	preparation is often uncertain in clinical practice, particularly given concerns
	regarding the accuracy and reliability of food intake reported by the
	patients. This can lead to lower diagnosis confidence for the reporting
	clinicians when determining the presence or extent of cardiac inflammation.
	A provinus clinical audit in cardiac sarcoidesis conducted at Poyal Brisbane
	and Women's Hospital (RBWH) confirmed that the RBWH Nuclear Medicine
	Department's current protocol of preparing cardiac sarcoidosis patients for
	FDG-PET (with a specific diet and fasting instructions prior to scans)
	successfully suppresses physiological myocardial uptake in the majority of
	individuals, thus increasing diagnosis confidence for the physicians.
	However, this previous analysis was only based on visual assessment of the
	scans. Accurate quantification of the degree of FDG uptake in the
	myocardium is necessary to allow a more definitive diagnosis of cardiac
	sarcoloosis using PET imaging. In addition, it could play an important role in
	Accurate quantification of EDG untake in the myocardium requires robust
	detection and segmentation of the myocardial tissue in PFT/CT scans
	However, the currently available software in the department of Nuclear
	Medicine at RBWH can only achieve an accurate tissue segmentation in

	 ~60% of cases. In the other 40%, the estimated myocardial tissue partially overlaps the lung or subdiaphragmatic contents, making the measurements unreliable. In this project, the summer scholar will employ deep learning methods to develop a robust myocardial tissue segmentation in PET/CT scans, which would ultimately lead to improved diagnosis confidence in cardiac sarcoidosis.
Expected	Scholars will have the opportunity to:
outcomes and deliverables:	 engage and interact with a multidisciplinary team of researchers with expertise in developing machine learning models, medical image analysis and computational neuroscience. gain skills in medical image analysis and applied machine learning in medical imaging.
	 generate publications from their research.
	 learn about a wide range of other research projects that are
	undergoing at the Centre for Advanced imaging and identify the
	field of research they might be interested to follow.
	Students may also be asked to produce a report and present their work at the Centre for Advanced Imaging (CAI) at the end of their project.
Suitable for:	This project is open to applications from students with Python programming skills and experience in developing deep learning/machine learning applications. Previous experience in medical image analysis is an advantage.
Primary	Dr Shahrzad Moinian
Supervisor:	
Further info:	For more details about the project please contact Dr Moinian (<u>s.moinian@uq.edu.au</u>)
	For further information about the Summer Research Scholarship at the Centre for Advanced Imaging (CAI), please contact CAI's centre manager Ms Rachael Birks (r.birks@uq.edu.au)