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Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain
measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a
series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are
kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid alias-
ing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to
multidimensional experiments employed the same sampling techniques used in one dimension, similarly
subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The chal-
lenges of obtaining high-resolution spectral estimates from short data records using the DFT were already
well understood, however. Despite techniques such as linear prediction extrapolation, the achievable res-
olution in the indirect dimensions is limited by practical constraints on measuring time. The advent of
non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to
an explosion in the development of novel sampling strategies that avoid the limits on resolution and
measurement time imposed by uniform sampling. The first part of this review discusses the many
approaches to data sampling in multidimensional NMR, the second part highlights commonly used meth-
ods for signal processing of such data, and the review concludes with a discussion of other approaches to
speeding up data acquisition in NMR.
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1. Data sampling in NMR spectroscopy

Beginning with the development of Fourier Transform NMR by
Richard Ernst and Weston Anderson in 1966, the measurement of
NMR spectra has principally involved the measurement of the free
induction decay (FID) following the application of broad-band RF
pulses to the sample [1]. The FID is measured at regular intervals,
and the spectrum obtained by computing the discrete Fourier
transform (DFT). The accuracy of the spectrum obtained by this
approach depends critically on how the data is sampled. In multi-
dimensional NMR experiments, the constraint of uniform sampling
intervals imposed by the DFT incurs substantial burdens. The
advent of non-Fourier methods of spectrum analysis that do not
require data sampled at uniform intervals has enabled the develop-
ment of a host of nonuniform sampling strategies that circumvent
the problems associated with uniform sampling. Here, we review
the fundamentals of sampling, both uniform and nonuniform, in
one and multiple dimensions. We then survey nonuniform sam-
pling methods that have been applied to multidimensional NMR,
and consider prospects for new developments.
1.1. Fundamentals: sampling in one dimension

Implicit in the definition of the complex discrete Fourier trans-
form (DFT)

f n ¼
1ffiffiffiffi
N
p

XN�1

k¼0

dke�2pikn=N ð1Þ

is the periodicity of the spectrum, which can be seen by setting n to
N in Eq. (1). Thus the component at frequency n/NDt is equivalent to
(and indistinguishable from) the components at (n/NDt) ± (m/Dt),
m = 1, 2, . . . This periodicity makes it possible to consider the DFT
spectrum as containing only positive frequencies, with zero fre-
quency at one edge, or containing both positive and negative fre-
quencies with zero frequency near (but not exactly at) the
middle. The equivalence of frequencies in the DFT spectrum that
differ by a multiple of 1/Dt is a manifestation of the Nyquist sam-
pling theorem, which states that in order to unambiguously deter-
mine the frequency of an oscillating signal from a set of uniformly
spaced samples, the sampling interval must be at least 1/Dt. (For
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additional details of the DFT and its application in NMR, see Hoch
and Stern [2].)

In Eq. (1) the data samples and DFT spectrum are both complex.
Implicit in this formulation is that two orthogonal components of
the signal are sampled at the same time, referred to as simulta-
neous quadrature detection. Most modern NMR spectrometers
are capable of simultaneous quadrature detection, but early instru-
ments had a single detector, so only a single component of the sig-
nal could be sampled at a time. With so-called single-phase
detection, the sign of the frequency is indeterminate. Consequently
the carrier frequency must be placed at one edge of the spectral
region and the data must be sampled at 1/2Dt to unambiguously
determine the frequencies of signals spanning a bandwidth 1/Dt.

The detection of two orthogonal components permits the sign
ambiguity to be resolved while sampling at a rate of 1/Dt. This
approach, called phase-sensitive or quadrature detection, enables
the carrier to be placed at the center of the spectrum. Simultaneous
quadrature detection was originally and for decades achieved by
mixing a detected sinusoidal signal oscillating at a reference fre-
quency and the same signal phase shifted by 90�. The output of
the phase-sensitive detector is two signals, differing in phase by
90�, containing frequency components of the original signal oscil-
lating at the sum and difference of the reference frequency with
the original frequencies. The sum frequencies were then typically
filtered out using a low-pass filter. While quadrature detection
enables the sign of frequencies to be determined unambiguously
while sampling at 1/Dt, it requires just as many data samples as
single-phase detection since it samples the signal twice at each
sampled interval, whereas single-phase detection samples one at
each sampled interval. In modern spectrometers, simultaneous
quadrature is eschewed in favor of very high-frequency single-
phase sampling. The data are down-sampled, filtered, and pro-
cessed to emulate the results of simultaneous quadrature detec-
tion: a complex data record with the reference carrier frequency
in the middle of the spectral range and an interval between
samples corresponding to the chosen bandwidth (rather than the
sampling interval of the very fast analog-to-digital converter).
With some instruments the processing algorithms employed are
considered proprietary and the raw primary are not saved, pre-
cluding the use of more modern signal processing algorithms or
accurate correction of potential artifacts.

1.1.1. Oversampling
The Nyquist theorem places a lower bound on the sampling

rate, but what about sampling faster? It turns out that sampling
faster than the reciprocal of the spectral width, called oversam-
pling, can provide some benefits. One is that the oversampling
increases the dynamic range, the ratio between the largest and
smallest signals that can be detected [3,4]. Analog-to-digital (A/
D) converters employed in most NMR spectrometers represent
the converted signal with fixed binary precision, e.g. 14 or 16 bits.
A 16-bit A/D converter can represent signed integers between
�32,768 and +32,767. Oversampling by a factor of n effectively
increases the dynamic range by

p
n. Another benefit of oversam-

pling is that it prevents certain sources of noise that are NOT
band-limited to the same extent as the systematic (NMR) signals
from being aliased into the spectral window.

How long should one sample? For signals that are stationary, that
is their behavior does not change with time, the longer you sample
the better the sensitivity and accuracy. For normally-distributed
random noise, the signal-to-noise-ratio (SNR) improves with the
square root of the number of samples. NMR signals are rarely sta-
tionary, however, and the signal envelope typically decays expo-
nentially in time. For decaying signals, there invariably comes a
time when collecting additional samples is counter-productive,
because the amplitude of the signal has diminished below the
amplitude of the noise, and additional sampling only serves to
reduce SNR. The time 1.3/R2, where R2 is the decay rate of the sig-
nal, is the point of diminishing returns, beyond which additional
data collection results in reduced sensitivity [5]. It makes sense
to sample at least this long in order to optimize the sensitivity
per unit time of an experiment. But limiting sampling to 1.3/R2

results in a compromise. That’s because the ability to distinguish
signals that have similar frequencies increases the longer one sam-
ples. Intuitively this makes sense because the longer two signals
with different frequencies evolve, the less synchronous their oscil-
lations become. Thus resolution, the ability to distinguish closely-
spaced frequency components, is largely related to the longest
evolution time sampled. In general, however, determination of
the optimal maximum evolution time involves tradeoffs that will
depend on many factors, including sample characteristics and the
nature of the experiment being performed. Some of these factors
are considered below.
1.2. Sampling in multiple dimensions

While the FT-NMR experiment of Ernst and Anderson was the
seminal development behind all of modern NMR spectroscopy, it
was not until 1971 that Jean Jeener proposed a strategy for para-
metric sampling of a virtual or indirect time dimension that
formed the basis for modern multidimensional NMR [6], including
applications to magnetic resonance imaging (MRI). In the simplest
realization, an indirect time dimension can be defined as the time
between two RF pulses applied in an NMR experiment. The FID is
recorded subsequent to the second pulse, and because it evolves
in real time, its evolution is said to occur in the acquisition dimen-
sion. A single experiment can only be conducted using a given
value of the time interval between pulses, but the indirect time
dimension can be explored by repeating the experiment using dif-
ferent values of the time delay. When the values of the time delay
are systematically varied using a fixed sampling interval, the
resulting spectrum as a function of the time interval can be com-
puted using the DFT along the columns of the two-dimensional
data matrix, with rows corresponding to samples in the acquisition
dimension and columns the indirect dimension. Generalization of
the Jeener principle to an arbitrary number of dimensions is
straightforward, limited only by the imagination of the spectrosco-
pist and the ability of the spin system to maintain coherence over
an increasingly lengthy sequence of RF pulses and indirect evolu-
tion times.
1.2.1. Quadrature detection in multiple dimensions
Left ambiguous in the discussion above of multidimensional

NMR experiments is the problem of frequency sign discrimination
in the indirect dimensions. Because the indirect dimensions are
sampled parametrically, i.e. each indirect evolution time is sam-
pled via a separate experiment, the possibility of simultaneous
quadrature detection is not available. Quadrature detection in the
indirect dimension of a two-dimensional experiment nonetheless
can be accomplished by using two experiments for each indirect
evolution time to determine two orthogonal responses. This
approach was first described by States, Haberkorn, and Ruben,
and is frequently referred to as the States method [7]. Alterna-
tively, oversampling could be used by sampling at twice the
Nyquist frequency while rotating the detector phase through 0�,
90�, 180�, and 270�, an approach called time-proportional phase
incrementation (TPPI) [8]. A hybrid approach is referred to as
States-TPPI [9]. Processing of States-TPPI sampling is performed
using a complex DFT, just as for States sampling, while TPPI
employs a real DFT.
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1.2.2. Sampling-limited regime
An implication of the Jeener strategy for multidimensional

experiments is that the length of time required to conduct a mul-
tidimensional experiment is directly proportional to the total
number of indirect time samples (times two for each indirect
dimension if States or States-TPPI sampling is used). In experi-
ments that permit the spin system to return close to equilibrium
by waiting on the order of T1 before performing another experi-
ment, sampling along the acquisition dimension effectively incurs
no time cost. Sampling to the Rovnyak limit [10] (1.3/R2, or
1.3 � T2

⁄) in the indirect dimensions, however, places a substantial
burden on data collection, even for experiments on proteins with
relatively short relaxation times. Thus a three dimensional exper-
iment for a 20 kDa protein at 14 T (600 MHz for 1H) exploring 13C
and 15N frequencies in the indirect dimensions would require
2.6 days in order to sample to 1.3 � T2

⁄ in both indirect dimen-
sions. A comparable four-dimensional experiment with two 13C
(aliphatic and carbonyl) and one 15N indirect dimensions would
require 137 days. As a practical matter, multidimensional NMR
experiments rarely exceed a week, as superconducting magnets
typically require cryogen refill on a weekly basis. Thus, multidi-
mensional experiments rarely achieve the full potential resolution
afforded by superconducting magnets. The problem becomes
more acute at very high magnetic fields. The time required for
data collection in a multidimensional experiment to achieve fixed
maximum evolution times in the indirect dimensions increases in
proportion to the magnetic field raised to the power of the num-
ber of indirect dimensions. The same four-dimensional protein
NMR experiment mentioned above but performed at 21.4 T
(900 MHz for 1H), sampled to 1.3 � T2

⁄, would require about
320 days.

By reducing the sampling requirements, nonuniform sampling
(NUS) approaches have made it possible to conduct high-resolu-
tion 4D experiments that would be impractical using uniform sam-
pling. In its most general form, NUS refers to any sampling scheme
that does not employ a uniform sampling interval. The sampling
can occur at completely arbitrary times, however the classes of
NUS that have been mainly used in multidimensional NMR typi-
cally correspond either to a subset of the uniformly-spaced sam-
ples or to uniform sampling along radial vectors in time. These
approaches are called on-grid and off-grid NUS, respectively, and
are described in greater detail below. The most important charac-
teristic of any NUS approach is that it enables sampling to long
evolution times without requiring the number of samples overall
that would be required by uniform sampling.

While there are methods of spectrum analysis capable of super-
resolution, that is, methods that can achieve resolution greater
than 1/tmax, the most common ones, (e.g. linear prediction (LP)
extrapolation) have substantial drawbacks. LP extrapolation and
related parametric methods that assume exponential decay of
the signal can exhibit subtle frequency bias when the signal decay
deviates from the ideal [11]. This bias can have detrimental conse-
quences for applications that require the determination of small
frequency differences, such as determination of residual dipolar
couplings (RDCs).

1.2.3. Sensitivity-limited regime
While the majority of extant applications of NUS in multidi-

mensional NMR have focused on achieving high resolution with
lower sampling requirements than those posed by uniform sam-
pling, it is possible to utilize NUS to increase sensitivity per unit
measuring time. This notion has not been without controversy,
because the nonlinearities inherent in most of the methods of
spectrum analysis employed with NUS complicate the validation
of gains in SNR as true gains in sensitivity [12]. A number of inves-
tigators have turned their attention to this problem, notably
Wagner [13] and colleagues and Rovnyak and colleagues [14,15].
Theoretical and empirical investigations of the attainable sensitiv-
ity improvements with NUS indicate that gains on the order of
twofold over uniform sampling for an equivalent time are achiev-
able for exponentially decaying signals [5,14]. This improvement at
no time cost contrasts with the fourfold increase in signal averag-
ing that would be required to achieve the same improvement in
SNR.

1.3. ‘‘DFT’’ of NUS data and point-spread functions

From the definition of the DFT, it is clear that the Fourier sum
can be modified by evaluating the summand at arbitrary frequen-
cies, rather than at uniformly spaced frequencies. Kozminksi and
colleagues have proposed this approach for computing frequency
spectra of NUS data [16], however strictly speaking it no longer
is properly called a Fourier transformation of the NUS data. Con-
sider the special case where the summand in Eq. (1) is evaluated
for a subset of the normal regularly-spaced time intervals. An
important characteristic of the DFT is the orthogonality of the basis
functions (the complex exponentials),

XN�1

n¼0

e�2piðk�k0Þn=N ¼ 0; k – k0 ð2Þ

When the summation is carried out over a subset of the time
intervals, that is, some of the values of n indicated by the sum in
Eq. (2) are left out, the complex exponentials are no longer orthog-
onal. A consequence is that frequency components in the signal
interfere with one another when the sampling is nonuniform
(see also Section 2.5.1).

Consider now NUS data sampled at the same subset of uni-
formly spaced times, but supplemented by the value zero for those
times from the uniformly-spaced set that are not sampled. Clearly
the DFT can be applied to this zero-augmented data, but it is not
the same as ‘‘applying the DFT to NUS data’’. It is a subtle distinc-
tion, but an important one. What is frequently referred to as the
DFT spectrum of NUS data is not the spectrum of the NUS data,
but the spectrum of the zero-augmented data. The differences
between the DFT of the zero-augmented data and the spectrum
of the signal are mainly the result of the choice of sampled times,
and hence are called sampling artifacts. While the DFT of zero-aug-
mented data is not the spectrum we seek, it can sometimes be a
useful approximation if the sampled times are chosen carefully
to diminish the sampling artifacts.

The application of the DFT to NUS data has parallels in the
problem of numerical quadrature on an irregular mesh, or evalu-
ating an integral on a set of irregularly-spaced points [17]. The
accuracy of the integral estimated from discrete samples is typi-
cally improved by judicious choice of the sample points, or pivots,
and by weighting the value of the function being integrated at
each of the pivots. For pivots (sampling schedules) that can be
described analytically, the weights correspond to the Jacobian
for the transformation between coordinate systems (as for the
polar FT, discussed below). For sampling schemes that cannot
be described analytically, for example those given with a random
distribution, the Voronoi area (in two dimensions; the Voronoi
volume in three dimensions, etc.) can be used to estimate the
appropriate weights [18]. The Voronoi area is the area occupied
by the set of points around each pivot that are closer to that pivot
than to any other pivot in the NUS set.

Under certain conditions the relationship between the DFT of
the zero-augmented NUS data and the true spectrum has a partic-
ularly simple form. If the sampling is restricted to the uniformly-
spaced Nyquist grid (also referred to as the Cartesian sampling
grid) and there exists a real-valued sampling function with the
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property that when it multiplies a uniformly sampled data vector,
element-wise (i.e. the Hadamard product of the data and sampling
vectors), resulting in the zero-augmented NUS data vector, then
the DFT of the zero-augmented NUS data is the convolution of
the DFT spectrum of the uniformly sampled data with the DFT of
the sampling vector. The sampling vector, or sampling function,
has the value 1 for times that are sampled and zero for times that
are not sampled. The DFT of the sampling function is variously
called the point-spread function (PSF), the impulse response, or
the sampling spectrum.

The PSF provides insight into the locations and magnitudes of
sampling artifacts that result from NUS, and it can have an arbi-
trary number of dimensions, corresponding to the number of
dimensions in which NUS is applied. The PSF typically consists of
a main central component at zero frequency, with smaller non-
zero frequency components. Because the PSF enters into the DFT
of the zero-augmented spectrum through convolution, each non-
zero frequency component of the PSF will give rise to a sampling
artifact for each component in the signal spectrum, with positions
relative to the signal components that are the same as the relation-
ship of the satellite peaks in the PSF. The amplitudes of the sam-
pling artifacts will be proportional to the amplitude of the signal
component and the relative height of the satellite peaks in the
PSF. Thus the largest sampling artifacts will arise from the larg-
est-amplitude components of the signal spectrum. The effective
dynamic range (ratio between the magnitude of the largest and
smallest signal component that can be unambiguously identified)
of the DFT spectrum of the zero-augmented data can be directly
estimated from the PSF for a sampling scheme as the ratio between
the amplitude of the largest non-zero frequency component to the
amplitude of the zero-frequency component, called the peak-to-
sidelobe ratio (PSR) [19]. Note, however, that this does not account
for interference between artifacts produced by signals at different
frequencies.

The simple relationship between the DFT spectrum of zero-aug-
mented NUS data and the DFT spectrum of the corresponding uni-
formly-sampled data holds as long as all the quadrature
components are sampled for a given set of indirect evolution times.
If they are not all sampled, the sampling function is complex, and
the relationship between the DFT of the NUS data, the DFT of the
sampling function, and the true spectrum is no longer a simple
convolution, but a set of convolutions [19].

1.4. Nonuniform sampling: a brief history

1.4.1. The accordion
It was recognized soon after the development of multidimen-

sional NMR that one way to reduce sampling requirements in
multidimensional NMR is to avoid collecting the entire Nyquist
grid in the indirect time dimensions. The principal challenge to
this idea was that methods for computing the multidimensional
spectrum from nonuniformly sampled data were not widely
available. In 1981 Bodenhausen and Ernst introduced a means
of avoiding the sampling constraints associated with uniform
parametric sampling of two indirect dimensions of three-dimen-
sional experiments, while also avoiding the need to compute a
multidimensional spectrum from an incomplete data matrix, by
coupling the two indirect evolution times [20]. By incrementing
the evolution times in concert, sampling occurs along a radial
vector in t1–t2, with a slope given by the ratio of the increments
applied along each dimension. This effectively creates an aggre-
gate evolution time t = t1 + a ⁄ t2 that is sampled uniformly, and
thus the DFT can be applied to determine the frequency spec-
trum. According to the projection – cross-section theorem [21],
this spectrum is the projection of the full t1–t2 spectrum onto a
vector with angle a in the f1–f2 plane. Bodenhausen and Ernst
referred to this as an ‘‘accordion’’ experiment. Although they
did not propose reconstruction of the full f1–f2 spectrum from
multiple projections, they did discuss the use of multiple projec-
tions for characterizing the corresponding f1–f2 spectrum, and
thus the accordion experiment is the precursor to more recent
radial sampling methods that are discussed below. Because the
coupling of evolution times effectively combines dimensions,
the accordion experiment is an example of a reduced dimension-
ality (RD) experiment (discussed below).

1.4.2. Random sampling
The 3D accordion experiment has much lower sampling

requirements because it avoids sampling the Cartesian grid of
(t1, t2) values that must be sampled in order to utilize the DFT to
compute the spectrum along both t1 and t2. A more general
approach is to eschew regular sampling altogether. A consequence
of this approach is that one cannot utilize the DFT to compute the
spectrum, so some alternative method capable of utilizing nonuni-
formly sampled data must be employed. In seminal work, Laue and
collaborators introduced the use of maximum entropy (MaxEnt)
reconstruction to compute the frequency spectrum from nonuni-
formly sampled data corresponding to a subset of samples from
the Cartesian grid [22]. While the combination of non-uniform
sampling and MaxEnt reconstruction provided high-resolution
spectra with dramatic reductions in experiment time, the approach
was not widely adopted, no doubt because neither MaxEnt recon-
struction nor nonuniform sampling (NUS) was highly intuitive.
Nevertheless, a small cadre of investigators continued to explore
novel NUS schemes in conjunction with MaxEnt reconstruction
throughout the 1990s.

1.4.3. The NUS explosion
Since the turn of the 21st century, there has been a great deal

of effort to develop novel NUS strategies for multidimensional
NMR. The growing interest in NUS is largely attributable to the
development by Freeman and Kupče of a method employing
back-projection reconstruction (BPR) to obtain three-dimensional
spectra from a series of two-dimensional projections, in analogy
with computer-aided tomography (CAT) [23]. Although connec-
tions between BPR and the approach of Laue et al. [22] or RD
and other radial sampling methods (e.g. G-Transform FT [24])
were not initially recognized, the connections were later demon-
strated by using MaxEnt to reconstruct 3D spectra from a series
of radially-sampled experiments [25]. The realization that all
these fast methods of data collection and spectrum reconstruction
belong to a larger class of NUS approaches ignited the search for
optimal sampling strategies. Two persistent themes have been
the importance of irregularity or randomness in the choice of
sampling times to minimize sampling artifacts, and the impor-
tance of sampling more frequently when the signal is strong to
bolster sensitivity. Approaches involving various analytic sam-
pling schemes (triangular, concentric rings, spirals), as well as
pseudo-random distributions (Poisson gap) have been described.
These will be considered after first discussing some characteris-
tics of NUS that all these approaches share.

1.5. General aspects of nonuniform sampling

1.5.1. On-grid vs. off-grid sampling
NUS schemes are sometimes characterized as on-grid or off-

grid. Schemes that sample a subset of the evolution times normally
sampled using uniform sampling at the Nyquist rate (or faster) are
called on-grid. In schemes such as radial, spiral or concentric ring,
the samples do not fall on the same Cartesian grid (see also Fig. 6).
As pointed out by Bretthorst [26,27], however, one can define a
Cartesian grid with spacing determined by the precision with



Fig. 1. Radial, Poisson gap, random, and exponentially biased sampling (envelope-matched sampling, EMS) schemes (left column) for 30% sampling coverage of the
underlying Nyquist grid, and corresponding point spread functions (PSFs) for 30%, 10%, and 5% sampling coverage (left to right). The intensity scale for the PSFs is shown on
the right. The central (zero frequency) component for random sampling is so sharp as to be barely visible. Adapted from Mobli et al. [31].
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which evolution times are specified. Alternatively, ‘‘off grid’’ sam-
pling schemes can be approximated by ‘‘aliasing’’ (this time in
the computer graphics sense) the evolution times onto a Nyquist
grid, without greatly impacting the sampling artifacts [25].
1.5.2. Bandwidth and aliasing
Bretthorst was the first to carefully consider the implications of

NUS for bandwidth and aliasing [27,28]. Among the major points
Bretthorst raises is that sampling artifacts accompanying NUS
can be viewed as aliases. Consider the special case of sampling
every other point of the Nyquist grid. This would effectively reduce
the spectral window and result in perfect aliases such that a given
signal would appear at its true frequency and again at a frequency
shifted by the effective bandwidth (both with the same amplitude).
If the sample points are now distributed in a progressively more
random distribution, the intensity of the aliased peak is reduced
whilst lower amplitude artifacts appear at different frequencies,
making it possible to distinguish which of the two initial signals
is the true signal and which is the aliasing artifact.
Since sampling artifacts are aliases, then they can be dimin-
ished by increasing the effective bandwidth. One way to do this
is to decrease the greatest common divisor (GCD) of the sampled
times [29]. The GCD need not correspond to the spacing of the
underlying grid. Introducing irregularity is one way to decrease
the GCD to the size of the grid, and this helps to explain the use-
fulness of randomness for reducing artifacts from nonuniform
sampling schemes.

Another way to increase the effective bandwidth is to sample
from an oversampled grid. We discussed earlier that oversampling
can benefit uniform sampling approaches by increasing the
dynamic range. When employed with NUS, oversampling has the
effect of shifting sampling artifacts out of the original spectral win-
dow [30].

1.6. An abundance of sampling schemes

While the efficacy of a particular sampling scheme depends on a
host of factors, including the nature of the signal being sampled,
the PSF provides a useful first-order tool for comparing sampling
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schedules a priori. Fig. 1 illustrates examples of several common
two-dimensional NUS schemes, together with PSFs computed for
varying levels of sampling coverage (30%, 10%, and 5%) of the
underlying uniform grid. Some of the schemes are off-grid
schemes, but they are approximated here by mapping onto a uni-
form grid. The PSF gives an indication of the distribution and mag-
nitude of sampling artifacts for a given sampling scheme; schemes
with PSFs that have very low values other than the central compo-
nent give rise to weaker artifacts. Of course the PSF alone does not
tell the whole story, because it does not address relative sensitiv-
ity. For example, while the random schedule has a PSF with very
weak side-lobes, and gives rise to fewer artifacts than a radial sam-
pling scheme for the same level of coverage, it has lower sensitivity
for exponentially decaying sinusoids than a radial scheme (which
concentrates more samples at short evolution times where the sig-
nal is strongest). Thus more than one metric is needed to assess the
relative performance of different sampling schemes.
1.6.1. Random and biased random sampling
Exponentially-biased random sampling was the first general

NUS approach applied to multidimensional NMR [22]. By analogy
with matched filter apodization (which was first applied in NMR
by Ernst, and maximizes the SNR of the uniformly-sampled DFT
spectrum), Laue and colleagues reasoned that tailoring NUS so that
the signal is sampled more frequently at short times, where the
signal is strong, and less frequently when the signal is weak, would
similarly improve SNR. They applied an exponential bias to match
the decay rate of the signal envelope; we refer to this as envelope-
matched sampling (EMS). Generalizations of the approach to sine-
modulated signals, where the signal is small at the beginning, and
constant-time experiments, where the signal envelope does not
decay, were described by Schmieder et al. [32,33] In principal
EMS can be adapted to finer and finer details of the signal, for
example if frequencies are know a priori (see beat-matched sam-
pling below).
1.6.2. Triangular
Somewhat analogous to the rationale behind exponentially-

biased sampling, Delsuc and colleagues employed triangular sam-
pling in two time dimensions to capture the strongest part of a
two-dimensional signal [34]. The approach is easily generalized
to arbitrary dimension.
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Fig. 2. Two-dimensional cross-sections from a four-dimensional N,C-NOESY spectrum, o
(B) real values only in the indirect dimensions, and (C) using random phase detection. O
the contour plots are depicted at the top. Reprinted with permission from Maciejewski
1.6.3. Radial
Radial sampling results when the incrementation of evolution

times is coupled, and is the approach employed by GFT [24], RD
[35], and BPR [23] methods. When a multidimensional spectrum
is computed from a set of radial samples (e.g. BPR, radial FT [36],
MaxEnt), the radial sampling vectors are chosen to span orienta-
tions from 0� to 90� at regular intervals (0�, 45� and 90� for 3 pro-
jections etc.). When the multidimensional spectrum is not
reconstructed, but instead the individual one-dimensional spectra
(corresponding to projected cross sections through the multidi-
mensional spectrum) are analyzed separately, the sampling angles
are sometimes determined using a knowledge-based approach
(HIFI, APSY [37,38]). Prior knowledge about chemical shift distribu-
tions in proteins is employed to sequentially select radial vectors
to minimize the likelihood of overlap in the projected cross-
section.

1.6.4. Concentric rings
Coggins and Zhou introduced the concept of concentric ring

sampling (CRS), and showed that radial sampling is a special case
of CRS [36]. They showed that the DFT could be adapted to CRS
(and radial sampling) by changing to polar coordinates from Carte-
sian coordinates (essentially by introducing the Jacobian for the
coordinate transformation as the weighting factor). Optimized
CRS that linearly increases the number of samples in a ring as
the radius increases and incorporates randomness was shown to
provide resolution comparable to uniform sampling for the same
measurement time, but with fewer sampling artifacts than radial
sampling. Coggins and Zhou also showed that the discrete polar
FT is equivalent to weighted back-projection reconstruction [39].

1.6.5. Beat-matched sampling
The concept of matching the sampling density to the signal

envelope, in order to sample most frequently when the signal is
strong and less frequently when it is weak, can be extended to
match finer details of the signal. For example, a signal containing
two strong frequency components will exhibit beats in the time
domain signal separated by the reciprocal of the frequency differ-
ence between the components. As the signal becomes more com-
plex, with more frequency components, more beats will occur,
corresponding to frequency differences between the various com-
ponents. If one knows a priori the expected frequencies of the sig-
nal components, one can predict the locations of the beats (and
00
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B C

btained from (A) uniformly sampled hypercomplex (States-Haberkorn-Ruben) data,
ne-dimensional cross-sections at the frequencies depicted by colored lines crossing
et al. [46].
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nulls), and tailor the sampling accordingly. The procedure is
entirely analogous to EMS, except that the sampling density is
matched to the fine detail of predicted time-domain data, not just
the signal envelope. We refer to this approach as beat-matched
sampling (BMS). Possible applications where the frequencies are
known include relaxation experiments, and multidimensional
experiments in which scout scans or complementary experiments
provide knowledge of the frequencies. In practice, BMS sampling
schedules appear similar to EMS (e.g. exponentially biased) sched-
ules, however they tend to be less robust, as small difference in
noise level or small frequency shifts can have pronounced effects
on the locations of beats or nulls in the signal [40].

1.6.6. Poisson gap sampling
It has been suggested that the distribution of the gaps in a sam-

pling schedule is also important [41,42], which has led to the
development of schedules optimized to be random yet with a
non-Gaussian distributions. In Poisson gap sampling this is
achieved by adapting an idea employed in computer graphics,
where objects are distributed randomly whilst avoiding long gaps
between objects. Similar distributions can be generated using
other approaches, for example quasi-random (e.g. Sobolev)
sequences [43]. A particularly useful property of Poisson gap sam-
pling schedules is that they show less variation when randomly
selecting schedules from the Poisson distribution than other sam-
pling schemes. A potential weakness of Poisson gap sampling,
however, is that the minimum distance between samples must
not be too small, otherwise aliasing can become significant.

1.6.7. Burst sampling
In burst or burst-mode sampling, short high-rate bursts are sep-

arated by stretches with no sampling. It effectively minimizes the
number of large gaps, while ensuring that samples are spaced at the
minimal spacing when sub-sampling from a grid. Burst sampling
has found application in commercial spectrum analyzers and com-
munications gear. In contrast to Poisson gap sampling, burst sam-
pling ensures that most samples are separated by the grid spacing
to suppress aliasing [29].

1.6.8. Nonuniform averaging
The concept of biasing the sampling distribution to mirror the

expected signal envelope (e.g. EMS or BMS) can be applied to
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Fig. 3. A timeline showing the introduction of various NMR methods aimed at speeding u
to fundamental advances in NMR spectroscopy that indirectly impacted or enabled thes
uniform sampling by varying the amount of signal averaging per-
formed for each sample. This can be useful in contexts where a sig-
nificant number of transients must be averaged to obtain sufficient
sensitivity. An early application of this idea to NMR employed uni-
form sampling with nonuniform averaging, and computed the
multidimensional DFT spectrum after first normalizing each FID
by dividing by the number of transients summed at each indirect
evolution time [44]. Although the results of this approach are qual-
itatively reasonable provided that the SNR is not too low, a flaw in
the approach is that noise will not be properly weighted. A solution
is to employ a method where appropriate statistical weights can be
applied to each FID, e.g. MaxEnt or maximum likelihood recon-
struction [45]. More generally, the idea of nonuniform averaging
can also be applied to NUS.

1.6.9. Random phase detection
We’ve seen how NUS artifacts are a manifestation of aliasing,

and how randomization can mitigate the extent of aliasing. There
is another context in which aliasing appears in NMR, and that is
determining the signs of frequency components (i.e. the direction
of rotation of the magnetization). As discussed earlier the approach
widely used in NMR to resolve this ambiguity is to simultaneously
detect two orthogonal phases (simultaneous quadrature detec-
tion). Single-phase detection using uniform sampling with random
quadrature phase (random phase detection, RPD) is able to resolve
the frequency sign ambiguity without oversampling, as shown in
Fig. 2 [46]. This results in a factor of two reduction in the number
of samples required, compared to quadrature or TPPI detection
methods, for each indirect dimension of a multidimensional exper-
iment. For experiments not employing quadrature or TPPI detec-
tion, it provides a factor of two increase in resolution for each
dimension.

16.10. Optimal sampling?
Any sampling scheme, whether uniform or nonuniform, can be

characterized by its effective bandwidth, dynamic range, resolu-
tion, sensitivity, and number of samples. Some of these metrics
are closely related, and it is not possible to optimize all of them
simultaneously. For example, minimizing the total number of sam-
ples (and thus the experiment time) invariably increases the mag-
nitudes of sampling artifacts. Furthermore, a sampling scheme that
is optimal for one signal will not necessarily be optimal for a signal
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containing frequency components with different characteristics.
Thus the design of efficient sampling schemes involves tradeoffs.
Simply put, no single NUS scheme will be best suited for all exper-
iments. However, if a particular metric for quantifying the quality
of a sampling scheme is defined it is possible to optimize a given
sampling scheme by random search methods [47,48]. Peak-to-
sidelobe (PSR) ratio (the ratio of the intensity of the zero-frequency
to the intensity of the largest non-zero frequency component) of
the PSF is one useful metric [49]. While a high PSR correlates with
low amplitude sampling artifacts it does not reflect the overall dis-
tribution of artifacts [14]. Thus the challenge remains to define
such a metric for spectral quality that would be universally
applicable.

The use of nonuniform sampling in all its guises is transforming
the practice of multidimensional NMR, most importantly by lifting
the sampling-limited barrier to obtaining the potential resolution
in indirect dimensions afforded by ultra high-field magnets. Non-
uniform sampling is also beginning to have tremendous impact
in magnetic resonance imaging, where even small reductions in
the time required to collect an image can have tremendous clinical
impact. For all of the successes using NUS, our understanding of
how to design optimal sampling schemes remains incomplete. A
major limitation is that we lack a comprehensive theory able to
predict the performance of a given NUS scheme a priori. This in
turn is related to the absence of a consensus on performance met-
rics, i.e., measures of spectral quality. Ask any three NMR spectros-
copists to quantify the quality of a spectrum and you are likely to
get three different answers. Further advances in NUS will be
enabled by the development of robust, shared metrics. An addi-
tional hurdle has been the absence of a common set of test or ref-
erence data, which is necessary for critical comparison of
competing approaches. Once shared metrics and reference data
are established, we anticipate rapid additional improvements in
the design and application of NUS to multidimensional NMR
spectroscopy.
2. Signal processing methods in NMR spectroscopy

In the first part we discussed how different sampling strategies
can lead to vastly different spectral representations. But what
about the influence of the methods used to process the NUS data?
Ever since the introduction of FT-NMR in the mid 1960s NMR spec-
troscopists have been investigating methods of accurately and effi-
ciently transforming the measured time series data into a
frequency spectrum [1]. Early efforts were aimed at overcoming
some of the shortcomings inherent in the DFT and achieving effi-
cient computation and robust application to noisy signals [50].
The introduction of two-dimensional (2D) NMR in the 1970s intro-
duced a separate problem, as these experiments were very time-
consuming [51]. Research was therefore focused on reducing the
number of time samples required in 2D experiments, resulting in
approaches that could speed up data acquisition by a factor of 2–
4 (see Hoch et al. [52]. and references therein). The poor SNR
achievable at the time proved a severe limitation to further pro-
gress. In the 1990s, however, several key advances resulted in a
dramatic boost in the sensitivity of multidimensional NMR exper-
iments at the same time that isotopic labeling of proteins resulted
in the design of 3D and 4D experiments with unprecedented sen-
sitivity [53,54]. These 3D and 4D experiments had some very
important properties: (1) They were often very sparse, meaning
that spectra consisting of tens or hundreds of thousands of data
values only contained a few hundred up to a few thousand signals;
(2) The available sensitivity was in many cases much higher than
that required to produce an accurate spectral representation. These
two conditions resulted in a situation where data acquisition was
limited by the required resolution rather than sensitivity, a rever-
sal of earlier conditions. Thus, since the turn of the millennium
there has been an explosion of methods attempting to use the
improved SNR to produce accurate multidimensional spectra of
NMR signals [25,55,56]. Considering that the number of signal
and post-processing techniques employed in multidimensional
NMR has nearly doubled in less than 10 years (see Fig. 3), and that
each has its own associated terminology, it is no wonder that this
area of NMR is bewildering even to the most experienced NMR
spectroscopists. Fortunately, most of these new methods rely on
a common set of basic principles. Understanding these principles
helps to illuminate the relationships between the various methods,
and makes signal processing in NMR more ‘‘coherent’’.

NUS and non-Fourier methods of spectrum analysis are inextri-
cably linked. Here we will discuss the most successful methods for
speeding up the acquisition of multidimensional NMR data. The
focus will be on introducing the key concepts that link the various
methods to one another and discussing their relative strengths and
weaknesses. Although a direct comparison of all these methods
applied to a common set of data would be the most informative
approach, such a critical comparison remains technically beyond
reach, primarily because (as in critical comparison of sampling
schemes) no common set of test data yet exists that includes data
sampled using all of the different sampling regimens employed by
the different approaches. Similarly, there is not yet a broad consen-
sus on metrics for characterizing the quality of multidimensional
NMR spectra. For this reason, very few studies that compare avail-
able fast acquisition methods have been conducted [25]. Thus,
practical benchmarks or guidelines for the practicing spectrosco-
pist are currently in short supply. Through this review we aim to
partially compensate for this lack of guiding principles, by provid-
ing the spectroscopist with the information needed to make
informed decisions regarding the potential utility of the many
methods available, and also to provide sufficient insight to allow
a critical assessment of the use of these methods for solving prob-
lems encountered in applications of NMR spectroscopy.

2.1. Limitations of the DFT

Data acquired using pulsed experiments results in a time-vary-
ing response, the FID, that can be approximated as sum of sinu-
soids, with each sinusoid representing an excited resonance. The
interpretation of an FID directly in the time domain is clearly
impractical when it contains more than one sinusoid. The chorus
of spins represented can be resolved into its components by con-
verting the time-domain response into a spectral representation,
indicating the amount of energy contained in the signal as a func-
tion of frequency. The use of FT for this conversion is so intimately
associated with the development of modern pulsed NMR that the
technique as a whole is often labeled FT-NMR [1]. Although the
application of the continuous FT to time domain data theoretically
produces an accurate frequency domain spectrum, its application
is impractical. Instead, the continuous NMR signal is sampled at
discrete time intervals at a fixed rate. The discrete Fourier trans-
form (DFT) can be applied to this data to obtain a frequency spec-
trum. The DFT is, however, only an approximation of the
continuous FT, and the accuracy of the result depends on how well
the approximation is satisfied. The two main differences between
the FT and the DFT, and hence the sources of errors when applying
the DFT, are the discrete sampling and the finite data length [52].
Sampling less frequently than mandated by the Nyquist criterion
leads to the appearance of signals in the spectrum at incorrect fre-
quencies, referred to as aliasing or folding (see also section 1.1)
[29]. Short data records (i.e. too few samples) leads to poor digital
resolution of the frequency domain spectrum and can result in
baseline distortions. The digital frequency resolution can be
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increased through ‘‘zero filling’’, which involves adding zeroes to
the end of the time domain data. This operation invariably results
in a discontinuity of the time domain data, which in turn results in
the appearance of additional unwanted signals in the spectrum,
commonly referred to as truncation artifacts or sinc wiggles. To
resolve this problem one must either collect longer datasets, or
multiply the FID with a ‘‘window’’ or ‘‘apodization’’ function that
smoothly reduces the amplitude of the signal near the end of the
data record. While this improves digital resolution and reduces
truncation artifacts, it also results in line broadening.

This act of balancing sensitivity and resolution provides much
of the motivation behind signal processing of NMR data. Ultimately
the aim is to resolve signals with similar frequencies without intro-
ducing artifacts that could mask weaker signals. In 1D NMR exper-
iments one can often collect a very long data record to improve
resolution, but this is not true for multidimensional (nD) NMR
experiments, because of the parametric manner in which the addi-
tional indirect dimensions are sampled. As can be appreciated from
the above, adding a time point in the indirect dimension of a two-
dimensional experiment requires the acquisition of an additional
one-dimensional dataset. By extension, adding another time point
to the second indirect dimension of a three-dimensional experiment
requires the acquisition of another two-dimensional experiment
(each 2D plane is a time point along the third dimension). Thus,
overcoming the inability of the DFT to provide high-resolution
 •  • • • •••••  ••• •• ••  ••  ••• • • ••• ••  •••• • •••
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CLEAN, Covariance NMR, Iterative Soft Thresholding 
(incl. Min. 1 Norm, Compressed Sensing, SIFT etc.)
Maximum Entropy Method, Multi Dimensional Decomposition
Multidimensional FT

Baysian Analysis
Filter Diagonalization Method
Linear Prediciton 
(incl. LPSVD, Burg’s MaxEnt etc.)
Regularized Resolvent Transform
Maximum Likelihood Method

Non-deterministic sampling (incl. irregular sampling)

Nyquist sampling Determinsitic sampling
(incl. radial sampling)
Inverse Radon Transform
Radial FT
APSY
Back Projection Reconstruction
G-matrix Fourier Transform
Projection Decomposition

Fig. 4. Relationships among different methods used for speeding up NMR data
acquisition. Processing methods are categorized based on the type of data they are
applicable to. The dotted line indicates that the methods appropriate for non-
deterministic sampling are also applicable to the other types of sampling, whereas
the converse is not true. Parametric methods are italicized and post-processing
methods are underlined.
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Fig. 5. Schematic depiction of RD, GFT and BPR. (A) The RD method gives rise to chemica
centered at the chemical shift of the other nucleus (x1). In GFT processing of RD data, th
reduced complexity (C) and (D). In projection spectroscopy the delays are scaled by a
dimensional plane, where an intersection in this higher dimensional spectrum reveals t
spectra from short data records becomes more burdensome with
each added dimension.

2.2. Accelerating multidimensional NMR experiments

Multidimensional NMR experiments are essential for resolving
individual nuclear resonances for complex biomolecules, and are
so ubiquitous that any advance in speeding up the traditionally
slow process of acquiring multidimensional NMR data would
impact the whole field. It is therefore not surprising that the prob-
lem has been attacked by a multitude of novel experimental and
computational methods. The need for speed in NMR has become
even more urgent recently with the advent of genetic and bio-
chemical tools that enable high-throughput production of biomol-
ecules for structural analysis. In particular, the global effort toward
structural genomics has led to new technological developments in
the past decade [57].

The approaches taken to speed up multidimensional NMR
experiments can be broadly categorized in two main groups: (i)
methods that employ signal processing methods capable of high
resolution using short or incomplete data records and (ii) methods
that employ alternatives to time evolution along indirect time
dimensions to elicit multidimensional correlations. Those in group
(i) typically utilize novel post-acquisition processing methods and
these will be covered in Sections 2.3–2.5, whereas those in group
(ii) involve more dramatic changes to the pulse sequence and/or
the hardware and these will be covered in Section 3. Group (i) is
where the majority of recent work has been done to overcome
the time-barrier imposed by the DFT (Fig. 4). The signal processing
methods in group (i) can be further categorized according to the
sampling regimens that they are compatible with. Typically, the
least restrictive processing methods are capable of producing spec-
tra from any type of data record, and include methods such as
MaxEnt reconstruction (red in Fig. 4). Methods that restrict the
sampling method can be further split into those that are applicable
to traditional uniformly-sampled data, including extrapolation
methods such as linear prediction (black in Fig. 4), and those that
are not. The final category of processing methods utilize non-uni-
form sampling but with a deterministic or coherent distribution
of samples in the time domain (green in Fig. 4). Such data can
either be directly used to produce a multidimensional spectrum,
or each component (e.g. radial projection) can be analyzed using
post-processing methods to generate information about the posi-
tion of the signals in the multidimensional spectrum (the latter
are underlined in Fig. 4). Typically methods in the first two groups
sample on a grid defined by the Nyquist condition, whilst the
T

E

BPR

l shift multiplets, which are separated by the chemical shift of one nucleus (x2) and
e phases are manipulated (B) so that their combination results in ‘‘basic spectra’’ of
projection angle. The resulting spectra can be directly projected onto the higher

he true chemical shifts (X marks the spot).



Fig. 6. Sampling grid showing on- and off-grid sampling of the same number of points (circles). The off-grid samples are according to radial sampling and the on-grid samples
are distributed randomly. The distances between the radial points are sufficient to reconstruct the same spectral window as the underlying grid (black dots) without aliasing.
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deterministic sampling methods sample outside this grid (see also
Fig. 6). In addition, signal processing methods can be characterized
as parametric (italic in Fig. 4) or nonparametric, depending on
whether or not they model the signal and estimate the spectrum
by refining parameters of the model.

The division according to sampling strategy shown in Fig. 4
reveals that methods for speeding up data acquisition applicable
to uniform Nyquist sampling are frequently (but not always) para-
metric (italic). Conversely those applicable to NUS data are com-
monly non-parametric. Furthermore it can be seen that most
methods applicable to radially sampled data are post-processing
methods (underlined).
2.3. Uniform (Nyquist) sampling

The methods in this section are generally only applicable to
conventional uniform or Nyquist sampling. These methods can
all be considered as extrapolating the time domain NMR signal
beyond the measured interval. The resulting extended data record
can then be zero-filled and Fourier transformed to produce high-
resolution spectra, or the spectrum can be reconstructed from
the parameters fitted to the model. The assumption common to
most of these methods is that the signal d can be described as a
sum of exponentially decaying sinusoids:

dk ¼
XL

j¼1

ðAjei/j Þe�kDt=sj e2pikDtxj ð3Þ

where L is the number of sinusoids, Aj, /j, sj and xj are the ampli-
tude, phase, decay time, and frequency respectively, of the jth sinu-
soid sampled at a time kDt, with Dt the sampling interval
determined by the Nyquist condition. Signals that decay exponen-
tially have Lorentzian lineshapes. Under certain circumstances
some of the parameters in Eq. (3) may be known a priori, simplify-
ing the problem of fitting Eq. (3) to measured data. An example is
data acquired in constant-time experiments, where the signal decay
is known (i.e. there is no decay). There is no analytical method for
fitting the parameters in Eq. (3). Most methods rely on matrix
approaches to determine best-fit values in a least-squares sense.
Although there are many different approaches to fitting the param-
eters, the common reliance on the model described by Eq. (3) means
that the different approaches frequently have similar behavior. A
common feature of methods based on Eq. (3), which does not
explicitly account for noise, is that they become unreliable when
the data is very noisy or the noise is not randomly distributed.
2.3.1. LP and related methods
Linear prediction (LP) extrapolation extends the measured data

by assuming that the signal can be described at any time as a linear
combination of past values:

dk ¼
Xm

j¼1

ajdk�j ð4Þ

where a sample (dk) in the time series can be predicted using m past
values (dk–j) given a set of aj weights. This turns out to be equivalent
to modeling the signal as a sum of exponential sinusoids [58,59].
Appropriate choice of the number of coefficients m (referred to as
the order) and their values, aj (referred to as LP coefficients), is
not a trivial matter, in particular since NMR data in addition to sinu-
soids include noise and other imperfections that render Eq. (4) only
approximate. Functions that obey Eq. (4) are called autoregressive
and include the class of signals described by Eq. (3). Importantly,
the coefficients aj are related to the parameters of Eq. (3). Thus,
instead of using the LP equations to explicitly extrapolate the FID,
it is possible to use the LP coefficients to solve for the parameters
of the corresponding model. The zeroes of the characteristic polyno-
mial formed from the LP coefficients yield the frequencies and
decay rates [2]. By using nonlinear fitting against the measured
data, the remaining parameters (amplitudes and phases) can be
determined. The result is a table of peak data, rather than a spec-
trum. A number of closely related methods (HSVD [60], LPSVD
[61], LPQRD [62]) employ this approach, and have been shown to
be especially useful for signals with a modest number of reso-
nances. These approaches obviate the need for subsequent analysis
employing a peak picker (these and other related methods are dis-
cussed in detail elsewhere [52,58]).

Using methods such as LPSVD that explicitly compute the
parameters of Eq. (3), the spectrum can be computed from the
model. In LP extrapolation, only the weights aj are determined,
and the FID is explicitly extrapolated beyond the measured interval
using Eq. (4). The spectrum is obtained by conventional FT of the
numerically extrapolated FID. This lessens the need to window
the data so that it has very small values near the end of the mea-
sured interval to avoid truncation artifacts, and thus also avoids
the concomitant line broadening.

In practice, the value of m is determined by the user, bounded
by ½ the available number of data samples. The ‘‘correct’’ value
is never known a priori, and depends not only on the number of
expected sinusoids but also on the noise level. Since the coeffi-
cients aj are approximate and the measured signal contains ran-
dom noise (which cannot be extrapolated), the prediction error
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will always increase as the length of the predicted interval
increases. Consequently, a conservative and common practice is
to limit extrapolation to a doubling of the length of the measured
data. The value of m is chosen to be significantly less than the num-
ber of measured samples yet larger than the number of expected
signals [63]. Values of m smaller than the number of sinusoids
leads to bias and inaccurate predictions, whereas values of m that
are too large can result in false peaks.

Another use of LP in NMR data processing is backward LP
extrapolation, when the initial data points have been corrupted
or cannot be measured [64]. In these cases the corrupt or missing
information can lead to severe baseline distortion or phase errors.
Finally, if the data has a known phase (e.g. sinusoidal or cosinusoi-
dal), it is possible to apply ‘‘mirror image LP’’ in which the number
of ‘‘measured’’ samples is doubled by reflection (with or without
sign inversion, depending on the phase) resulting in substantially
improved numerical stability of the LP extrapolation [64].
2.3.2. Maximum likelihood and Bayesian analysis
While LP methods explicitly assume an autoregressive model

for the signal, they implicitly are consistent with modeling the sig-
nal as a sum of decaying sinusoids. Hybrid parametric LP methods
generally compute the LP expansion coefficients as a first step, and
then use these to compute the model parameters (amplitudes,
phases, frequencies, decay rates). Maximum likelihood and Bayes-
ian methods take a more direct approach to computing the model
parameters. Also, the need for a priori estimation of the number of
signals with LP methods makes them poorly suited for unsuper-
vised processing. The approach taken by the maximum likelihood
method (MLM) [26,45,65,66] and Bayesian analysis (BA) [26,67]
is to determine the number of sinusoids in the model using statis-
tical methods. Broadly speaking, by assuming that NMR signals fol-
low the form of Eq. (3) they attempt to find a set of parameters that
define a model that when subtracted from the experimental data
leaves only random noise. MLM and BA differ mainly in the crite-
rion used to determine the best model. In MLM the aim is to max-
imize the likelihood that the signal was generated by a system
with the parameters given by the model. In BA, the posterior prob-
ability that the model is correct, which includes the likelihood as
well as a priori probability, is maximized. Depending on the nature
of the assumed prior probability distribution, the results of MLM
and BA can be quite similar, if not identical. We refer the reader
to the work of Bretthorst [26] for detailed derivations of the two
approaches. However, a broad overview of MLM helps to illumi-
nate the differences between LP methods and MLM or BA.

In the MLM implementation described by Chylla and Markley
[45], the measured data is zero-filled (and possibly augmented
with zeroes to replace missing samples from the Nyquist grid)
and subjected to FT. In the frequency domain a peak picker iden-
tifies the signal having the maximum amplitude, and the param-
eters describing this signal (amplitude, phase, frequency, and
decay rate) are determined by least-squares. The model described
by Eq. (1) is then populated with a single sinusoid with the deter-
mined parameters, and the time-domain signal corresponding to
the model is subtracted from the measured data. The residual is
then subjected to FT, and the peak picker again finds the largest
magnitude signal and its parameters are estimated. Another sinu-
soid with the parameters for this signal is added to the model,
and the time-domain signal for the new model is subtracted from
the zero-filled/augmented data. This procedure is repeated until
the residual is indistinguishable from noise. A number of statisti-
cal tests have been employed as stopping criteria (for determin-
ing the number of sinusoids in the model), including the Akaike
Information Criterion (AIC) and minimum description length
(MDL) [45].
2.3.3. Filter diagonalization method
Another method used in NMR data processing capable of super-

resolution is the filter diagonalization method (FDM), which was
first introduced to NMR by Mandelshtam et al. [68]. The FDM
method was initially applied to quantum dynamics, where the
problem of solving Eq. (3) is also of interest. The basic idea behind
FDM is to recast Eq. (3) into a problem of diagonalizing small
matrices. The filtering refers to breaking up the spectrum into
small pieces to reduce the computational burden; the algorithm
constructs a matrix where the off-diagonal elements represent
the interference between resonances. Diagonalizing this matrix
allows one to extract the parameters of Eq. (3). We refer the reader
to the review by Mandelshtam for details [69]. One of the advanta-
ges of FDM is that all the available data in a multidimensional
experiment is used to derive the parameters in Eq. (3). For exam-
ple, if a 2D spectrum has N data points in the direct dimension
and M points in the indirect dimension, N �M points are used to
solve the linear equations of FDM (generating a N � N matrix). As
long as N �M is large enough, accurate spectral estimates and
parameters can be obtained. In theory a value of M = 2 should be
enough to derive an accurate 2D spectrum having k signals, so long
as N �M is larger than 3k. Unfortunately, this is only true for data
of very high SNR and where the frequencies of signal components
are not overlapped. The resolving power of FDM is very sensitive to
both noise and overlap and much of the current development of
FDM is focused on improving the stability of the method for noisy
data and in finding efficient methods for removing spurious peaks.
Like other parametric methods, the output of FDM is a list of the
parameters describing the spectrum, rather than a spectrum. The
spectrum can be generated as in BA by using the output parameter
values to construct an FID which is then subjected to DFT. Alterna-
tively, the closely-related regularized resolvent transform (RRT)
can be used, which, using the principles of FDM, performs a trans-
form resulting in a frequency domain spectrum [69]. In situations
where the assumptions of the method (shared by FDM and RRT
alike) are not realized the resulting parameters or the spectral esti-
mate can include spurious peaks or baseline distortions. This
method has not achieved wide penetration, but is finding interest-
ing applications to sampling-limited experiments such as diffu-
sion-ordered spectroscopy (DOSY) [70], and holds considerable
promise.

2.4. Radially sampled data

The utility of radial sampling derives from the projection –
cross-section theorem [71], which states that Fourier transforma-
tion of data collected along a radial time vector with a given angle
in the t1–t2 plane is equivalent to the projection of the 2D spectrum
onto a frequency-domain vector with the same angle. Most spec-
troscopists are familiar with looking at orthogonal projections of
multidimensional experiments (onto a frequency axis) to assess
spectral quality, since these projections are equivalent to simply
running a 2D experiment without incrementing the missing
(orthogonal) dimension.

2.4.1. Reduced dimensionality
The first RD experiment was the accordion experiment intro-

duced by Bodenhausen and Ernst in 1981 [20,72]. In this approach
a 3D experiment was reduced to two dimensions by coupling the
evolution of the two indirect dimensions. In the original accordion
experiment one indirect dimension represented chemical shift
evolution while the second indirect dimension encoded a mixing
time designed to measure chemical exchange. Although this exper-
iment established the foundation for all future RD experiments,
most of which deal exclusively with chemical shift evolution, its
utility for measuring relaxation rates and other applications is still
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being developed [73,74]. Even though it was clear from the initial
description of the accordion experiment that the method was
applicable to any 3D experiment, it was nearly a decade before it
was applied to an experiment where both indirect dimensions rep-
resented chemical shifts [35,75]. This application emerged as a
consequence of newly-developed methods for isotopic labeling of
proteins that enabled multinuclear, multidimensional experi-
ments, with reasonable sensitivity, for sequential resonance
assignment and structure determination of proteins. The acquisi-
tion of two coupled frequency dimensions, however, introduces
some difficulties. The main problem is that the two dimensions
are mixed and must somehow be deconvoluted before any useful
information can be extracted.

Since the joint evolution linearly combines the two dimensions,
the corresponding frequencies are also linearly ‘‘mixed’’. The num-
ber of resonances observed in the lower dimensionality spectrum
depends on the number of linked dimensions. Thus, if two dimen-
sions are linked, the RD spectrum will contain two peaks per reso-
nance of the higher dimensionality spectrum, whereas if three
dimensions are coupled each of the two peaks will be split by
the second frequency resulting in four resonances, and so on. The
position of the peaks in the RD spectrum can be used to extract
the true resonance frequency. The problem obviously becomes
more complicated as the number of resonances is increased. If
overlap can be avoided, however, it is possible to drastically reduce
experimental time using this approach.

2.4.2. GFT NMR
An extension of RD was presented by Kim and Szyperski [24] in

2003 in which they used a ‘‘G-matrix’’ to appropriately combine
hypercomplex data of arbitrary dimensionality to produce ‘‘basic
spectra’’ (see Fig. 5. These spectra are much less complicated than
the RD projections, and the known relationship between the vari-
ous patterns can be used to extract true chemical shifts (via nonlin-
ear least-squares fitting). Combination of the hypercomplex planes
enables recovery of some sensitivity that is otherwise lost in RD
approaches due to peak splitting. A disadvantage is that the data
is not combined in a higher dimensional spectrum, so that the sen-
sitivity is related to that of each of the lower dimensional projec-
tions rather than the entire dataset. GFT-NMR was developed
contemporaneously with advances in sensitivity delivered by
higher magnetic fields and cryogenically cooled probes, providing
sufficient sensitivity to make GFT experiments feasible.

2.4.3. Back-projection reconstruction
GFT-NMR did much to revitalize interest in RD methods (after a

decade of sporadic application), but did not go as far as providing a
heuristic link between the coupled dimensions and their higher
dimensional (three or higher) equivalents. This was instead done
in a series of publications by Kupče and Freeman, who exploited
the relationship between a time-domain cross-section and its fre-
quency-domain projection, through the projection – cross-section
theorem [76]. The appeal of this approach was that it reconstructed
the higher dimensional spectrum using back-projection recon-
struction (BPR), analogous to the methods used in computerized
axial tomography (CAT) [77]. It simplified visual interpretation of
RD data, making it far more accessible to the broader NMR spec-
troscopy community. The principle of BPR is rather simple and
involves projecting the lower dimensional data onto the higher
dimensional plane at the appropriate projection angle (see shaded
lines in Fig. 5E). By combining multiple projection angles the ridges
caused by the peak information from each projection will intersect
at the correct frequencies of the higher dimensional object. The
accuracy of the reconstruction improves as the number of projec-
tions is increased. An important connection is that filtered BPR
(fBPR) has been shown to be equivalent to radial FT [78]. In fBPR
a ramp function (an apodization function ranging from 0 to 1 from
the beginning of the FID to the end) is applied to each projection
prior to adding it to the higher dimensional spectrum. The fBPR
procedure drastically reduces the weight of the high SNR portion
of the FID (the beginning where the filter values are low). This
helps because the data at short evolution times is greatly oversam-
pled if a very large number of projections are accumulated (this in
itself can lead to excessive line-broadening if fBPR is not applied).
The method has the advantage that the chemical shifts no longer
need to be deconvoluted but can instead be directly extracted from
the reconstructed spectrum. The major disadvantage is that as the
spectral complexity and dynamic range increase, small features
may be masked by strong ridges from projections of other peaks
or by accidental intersections that cause false peaks to appear. Sev-
eral methods have been developed to ameliorate the problems
associated with these artifacts. These all attempt to remove the
sampling related ‘‘ridge’’ artifacts in the BPR spectrum, and include
the simple lowest value algorithm and the CLEAN algorithm [79].
Each has strengths and weaknesses, but there is currently no con-
sensus on the best approach to post-processing of BPR spectra.

2.4.4. Post-processing of projections
RD, GFT and BPR stimulated interest in fast acquisition tech-

niques in multidimensional NMR and established the experimental
framework for many other approaches to processing such data. The
rising interest was in part due to the impressive results that were
demonstrated, but another factor is that the analogy to computer-
aided tomography (made explicit by BPR) provided a clear heuristic
framework for understanding precisely how NUS works. Another
factor was the increased demand for efficient NMR data collection
imposed by structural genomics initiatives and by the advent of
ultra-high magnetic fields (where the sampling problem is exacer-
bated by the shorter sampling interval imposed by greater shift dis-
persion). Thus, soon after the initial findings of Szyperski, Kupče,
Freeman and colleagues were reported, a number of new methodol-
ogies were proposed for enhancing coupled-evolution approaches.

PRODECOMP: The PRODECOMP (projection decomposition)
method was introduced as a method for analyzing GFT-type spec-
tra, but instead of using least squares to extract the correct chem-
ical shifts from the chemical shift multiplets, PRODECOMP
employs multiway-decomposition (MDD, described in Section
2.5.7) to disentangle the projected spectra into separate reso-
nances [80].

APSY: APSY (automated projection spectroscopy) [38] is a
method used to directly analyse projection data, rather than recon-
struct the full dimensionality spectrum. APSY uses the information
from the projection angle to interpret the peak information in the
projected spectrum. Datasets for a number of projection angles are
acquired and the projected spectra are analyzed to generate a peak
list for each projection angle. Since the projection angles are
known, the true peak frequency can be determined in the higher
dimensionality spectrum. Thus, even though the peak position will
change in each projection spectrum the calculated true frequencies
can show that the peak represents the same position in the ‘‘full’’
spectrum. The algorithm then calculates how many intersections
are present in the spectrum (see also Fig. 5 for illustration of an
intersection), by comparing the peak position in the various projec-
tions after translation to the higher dimensional object. It then
ranks the number of intersections (which are multidimensional
peak candidates) and removes the peak with the highest rank
(most intersections), removing with it all of the contributing peaks
from the lower dimensional projections (i.e. from the peak lists).
This has two effects, one of which is the desired effect of eliminat-
ing artifacts by removing any artifactual peaks that are coincident
with the position of a real peak to produce accidental intersections.
Conversely, the procedure may also remove support for a real peak
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if it is truly overlapped in several dimensions. The procedure is
repeated, removing a real peak at each iteration, until the number
of intersections at the remaining highest ranked peak candidate
falls below a user defined threshold. The list of peaks that have
been removed is now the true peak list and the remaining peak
candidates are discarded. The procedure is repeated a number of
times to reduce the likelihood of accidental removal of redundant
(overlapped) peaks. The peak positions are then averaged and
recorded.

HIFI NMR: HIFI NMR was introduced soon after BPR and
addressed the question of the optimal choice of projection angles
[37]. HIFI NMR uses a statistical approach similar to those
described in Section 2.3 to find the projection angle most likely
to resolve all the resonances. The best projection angle is deter-
mined from likely shift distributions, derived from average chem-
ical shift data contained in the Biological Magnetic Resonance
Data Bank [81] (BMRB) and the known amino acid composition
of the protein, as well as peak positions. In this sense HIFI is an
adaptive method, because the projection angle chosen depends
on the results obtained from prior projections. The algorithm
(acquiring and analyzing data at a specified projection angle) is
repeated until no additional information can be extracted.

2.5. Irregular sampling

In contrast to non-uniform sampling that results from coupling
two or more evolution periods, the first application of nonuniform
sampling (Fig. 1) in multidimensional NMR utilized a random sam-
pling scheme [22]. This sampling is not only less regular than the
radial sampling employed by RD methods (including BPR and
GFT), but it also requires a method for computing the spectrum
from time domain data that does not require uniformly-spaced
samples. Barna et al. [22] employed maximum entropy (MaxEnt)
reconstruction to compute spectra from irregularly-spaced data.
For a long time the different methods used for spectral analysis
obscured both the differences and the similarities between differ-
ent approaches that are fundamentally all nonuniform sampling
methods. More recently it was shown that MaxEnt reconstruction
is capable of performing back projection, and more importantly,
that when applied to the same data, MaxEnt and BPR yield essen-
tially equivalent results [25]. This implied that the differences in
the magnitude and nature of artifacts encountered when recon-
structing a multidimensional spectrum from data collected using
different sampling schemes (e.g. radial or random) are attributable
mainly to the sampling scheme, and not the method used to com-
pute the spectrum from the nonuniformly sampled data. The prob-
lem of estimating frequency spectra from irregularly-spaced data
is one that has been encountered in a host of other fields in science
and engineering, and a similarly large number of methods have
been developed. In this section we describe the main methods that
have been applied to multidimensional NMR.

2.5.1. nuDFT
As discussed in section 1.3 it is in principle possible to recon-

struct a spectrum from a set of arbitrarily-distributed time domain
samples by estimating the continuous Fourier Transform. Comput-
ing the Fourier integral is an exercise in numerical quadrature on
an irregular grid [82]. Provided that the samples fall on a regular
grid, however, one can use the DFT to compute the spectrum.
One simply inserts zeroes where data has not been sampled and
treats this as a normal uniformly sampled dataset. Inserting zeroes
at the grid points not sampled is, however, equivalent to leaving
the corresponding basis functions out of the Fourier sum. In the
absence of these lost basis functions, the remaining basis functions
no longer comprise an orthonormal basis set. A consequence is that
the sampled basis functions interfere with one another [30].
The result of applying the DFT to NUS data can be seen as the
convolution of the DFT spectrum for the uniformly sampled data
with the DFT of the sampling function (i.e. the point spread func-
tion). Sampling functions must be real-valued for the simple con-
volution relation between the DFT of zero-augmented NUS data
and PSF to hold (for nonuniform hypercomplex sampling that does
not acquire all components of each hypercomplex datum for a
given set of evolution times, the relationship becomes a family of
convolutions [19]). As seen in the first part of this review, PSFs
are valuable for estimating a priori the characteristics of the sam-
pling artifacts associated with a sampling scheme. PSFs typically
consist of a major component at zero frequency, with a number
of smaller non-zero frequency components. The width of the
zero-frequency component conveys the amount of signal broaden-
ing, while the non-zero frequency components reflect the magni-
tudes and relative locations of sampling artifacts. In the DFT of
zero-augmented NUS data, every signal component will give rise
to artifacts that have the same amplitudes relative to the parent
signal as the ratio of the amplitudes of the zero-frequency compo-
nent and the non-zero components. Deconvolution of these arti-
facts from the spectrum is the primary motivation behind non-
Fourier methods such as MaxEnt and compressed sensing. Thus
spectral estimates based on DFT of zero-augmented NUS data can
be considered to represent the upper bounds on artifacts associ-
ated with NUS (see Fig. 7).

2.5.2. Lagrange interpolation
A completely different approach to spectral estimation for non-

uniformly sampled data is to attempt to approximate what the
data would have looked like if it had been sampled uniformly,
using the information obtained from a set of nonuniformly sam-
pled data; the DFT can then be applied to the modified dataset.
One way to do this is to fit a continuous function to the nonuni-
formly sampled data, then interpolate using this function to esti-
mate the data values at uniform intervals. Marion and colleagues
[83] described the use of Lagrange interpolation to perform this
re-sampling onto a regular grid. In contrast to LP, where the data
is extrapolated beyond the measured interval, only short stretches
of data must be reconstructed and the errors therefore do not prop-
agate in the same way they do in LP extrapolation. Another feature
of the method is that since the Nyquist grid can be defined post-
acquisition one can avoid some of the problems of aliasing when
spectral windows are set inappropriately.

2.5.3. Multidimensional FT
More recently, a method called multidimensional FT (MFT) [16]

was proposed which involves computation of Fourier-like sums on
an arbitrary mesh, possibly including weights. When applied to
NUS data corresponding to a subset of uniformly sampled data,
the sums can be evaluated using the FFT (with elements not sam-
pled set to zero); otherwise the sums are computed by brute-force
summation. Unfortunately the name is something of a misnomer,
as it is not truly a Fourier transformation of NUS data. Whether
the time domain samples are selected from a uniform grid or are
collected off-grid, the orthogonality condition that applies to the
Fourier basis on a complete, uniform grid is not satisfied, and so
the NUS artifacts that result can be viewed as interference between
frequency components. When NUS is restricted to a uniform grid,
the artifacts correspond to convolution of the FT of the sampling
function (possibly including weights) with the uniformly-sampled
FT spectrum. Because no attempt is made to deconvolve the sam-
pling artifacts, this approach works best when the NUS scheme is
carefully constructed to minimize the artifacts.

MFT contrasts with regular DFT processing where the FT sums
are evaluated one dimension at a time. The method was initially
proposed for processing of projection data and shown to be equiv-
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Fig. 7. Comparison of spectra obtained with uniform sampling (A) and (B) and nonuniform sampling (C and D). In C the spectrum was computed using maximum entropy
reconstruction, using the same number of samples employed in B. In D the spectrum was computed using nuDFT (FT in which samples not collected are set to zero).
Reproduced from Hoch et al. [49] with permission from the PCCP Owner Societies.
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alent to the inverse Radon Transform. However, the method is
more general than this and its real strength is that it allows for a
small spectral window to be reconstructed in cases where a very
large spectral window has been acquired. As was discovered for
Lagrange interpolation, and explained more generally by
Bretthorst [84], the effect of increasing the spectral window (i.e.
reducing the distance between sample points) when sampling
non-uniformly is to push sampling-related artifacts to very high
frequencies. For multidimensional data the very large spectral win-
dows would eventually produce very large datasets if high digital
resolution were to be maintained. MFT would therefore aid in
accessing only regions of interest with high resolution. The method
relies heavily on the assumption that the sampling related artifacts
are reduced to such an extent as to not interfere with the signal
components, and can therefore be ignored. On the other hand,
sampling at time points other than those stipulated by the Nyquist
condition invariably results in oversampling (e.g. see Fig. 7 of Mob-
li and Hoch [30]). For time equivalent sampling from an exponen-
tially decaying distribution, oversampling in turn leads to line
broadening and then one must assume that limited signal overlap
is present in the higher dimensional object being reconstructed.

2.5.4. CLEAN
In contrast to the DFT of nonuniformly sampled data, there are a

number of methods that attempt to deconvolve the sampling spec-
trum to arrive at a more accurate spectral estimate. One such
method, known as CLEAN, takes a heuristic, iterative approach to
deconvolving the PSF from the spectral estimate [79,82]. The algo-
rithm begins by identifying the largest peak in the spectrum and
attempts to deconvolve all artifacts associated with that peak. It
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does this by: (i) fitting the peak to some function (generally a
Lorentzian line shape); (ii) creating a mock FID containing only
the modeled peak but having the same spectral properties as the
original spectrum (e.g. spectral window etc); (iii) discarding the
points in the FID that do not exist in the sampling schedule; (iv)
applying the Fourier transform; and (v) subtracting the resulting
spectrum from the experimental spectrum. Following this proce-
dure the peak and its associated artifacts are identified and
removed, and the operation is repeated until a pre-determined
threshold is reached (note the similarity to the procedures used
in APSY and MLM). The major problem with this approach is that
each peak must be accurately identified, modeled and removed
from the data individually; errors in this process can propagate
reconstruction artifacts. The algorithm requires a user-defined
threshold for determining the level at which remaining peaks are
not significant. Extensions to the heuristic ideas underlying CLEAN
have led to improvements in the ability to suppress NUS artifacts
[85] (Fig. 8), but the ad hoc nature of the approach remains an
obstacle to deeper understanding of why the method works, what
the possible failure modes are, or how to improve on the method.
The SCRUB method used in the right-most panel of Fig. 8 differs
from the original iterative subtractive CLEAN algorithm by group-
ing peaks and keeping track of the location of signal peaks from
prior iterations, enabling the threshold to achieve lower values clo-
ser to the intrinsic noise level [85].

2.5.5. Maximum entropy reconstruction
Maximum entropy reconstruction (MaxEnt) was first intro-

duced to NMR signal processing in the early 1980s [86]. MaxEnt
reconstruction treats signal processing as an inverse problem.
Starting with a trial frequency spectrum, a mock data set is gener-
ated via the inverse FT; the resulting time series is then compared
to the empirically measured data. The trial spectrum is iteratively
improved by applying constraints in both the frequency and time
domains. In the frequency domain the constraint is to maximize
the entropy, a measure of the absence of information (details of
the entropy functional and the iterative algorithm are given in
[2,87]). In the time domain the mock data is constrained to mini-
mize the difference from the experimental data. The level of agree-
ment between the mock FID and the measured data is generally
determined by the user, but to avoid over-fitting it should be com-
parable to the noise level in the measured data. Following this
principle the selection of reconstruction parameters can be made
Fig. 8. Comparison of DFT, CLEAN, and CLEAN with SCRUB post-processing a
automatically, based on the noise level and trial reconstructions
[88,89].

Since the algorithm works in an inverse manner, sampling the
FID is uncoupled from the mock FID, and computation of the level
of agreement can be restricted to sample times in common
between the experimental and mock FIDs. Thus MaxEnt readily
supports essentially arbitrary nonuniform sampling, provided that
the samples fall on the Nyquist grid corresponding to the mock FID.
Another important consequence of the inverse nature of the algo-
rithm is that one can use it to perform deconvolution in a very sta-
ble manner. In contrast to linear methods where the FID is divided
by a convolution kernel, using MaxEnt one multiplies the mock FID
by the kernel prior to comparison with the experimental FID, thus
avoiding divide-by-zero instabilities or noise amplification. This
approach can be used to deconvolve unwanted J modulation (to
achieve virtual decoupling) or signal decay (to achieve line narrow-
ing) [87,90].

The reduction in sampling artifacts by MaxEnt (see Fig. 7) is in
part due to the nonlinearity of the entropy functional. This nonlin-
earity is not without disadvantages. While the nonlinearity can be
minimized by appropriate choice of reconstruction parameters or
compensated by calibration [91,92], the nonlinearity means that
MaxEnt should only be applied to the last dimension to be sequen-
tially processed in a multidimensional dataset, so as not to com-
pound nonlinearities. Thus, in order to process two indirect
dimensions (for example in a 3D experiment) using MaxEnt, the
algorithm should be applied to both dimensions simultaneously.
In principle MaxEnt can be applied to data with arbitrary dimen-
sionality, but so far the largest number of dimensions that have
been simultaneously reconstructed using MaxEnt is three (the
three indirect dimensions of a 4D spectrum) [93]. Though not
insignificant, the computational demands of MaxEnt are easily
amenable to parallelization, for example using a loosely-coupled
cluster. MaxEnt reconstruction in one or two dimensions simulta-
neously can be readily performed using a laptop computer.

2.5.6. Forward maximum entropy and maximum entropy
interpolation

MaxEnt reconstruction is a nonlinear method, and the nature
and extent of the nonlinearity depends on the data. This presents
challenges for quantitative applications, for example quantifying
nuclear Overhauser effects or relaxation rates. One approach is to
generate a calibration curve by adding synthetic signals spanning
pplied to NUS data. Reprinted with permission from Coggins et al. [85].
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Fig. 10. Spectra computed from uniformly sampled data using IST (A) and MaxEnt
(B). A single exponentially decaying sinusoid was added to the experimental time-
domain data, with a frequency indicated by the red oval. Reprinted with permission
from Fig. 3D in Stern et al. [96].
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a range of amplitudes to the experimental data. Alternatively, the
parameters controlling MaxEnt reconstruction can be adjusted to
minimize the nonlinearity. Constraining the inverse DFT in the
MaxEnt reconstruction to more tightly match the measured data
reduces the nonlinearity. Hyberts and Wagner proposed taking this
approach to its logical extreme for NUS data, devising an algorithm
called Forward Maximum Entropy (FM) that uses the entropy to
regularize the reconstruction so that the inverse DFT exactly
matches the measured data for those samples collected [91]. In
essence the entropy is used only to determine the values of ‘‘miss-
ing’’ data not sampled by the NUS scheme. The results are highly
linear, and suitable for quantitative applications. The power of
FM is readily apparent from Fig. 9, which compares two-dimen-
sional cross sections from 3D HNCO spectra using 1250 samples
in the indirect dimensions sampled uniformly and processed using
the DFT (left), and sampled nonuniformly and processed using FM
(right) [94].

Because no constraint is used to enforce agreement between the
inverse DFT of the FM spectrum with the measured data, orthogo-
nality of the gradients for the entropy and the constraint cannot be
used as a convergence criterion. Instead convergence is assumed
when the step size becomes sufficiently small. As with many
fixed-point methods (see IST, below), this can result in false con-
vergence, if the step size becomes too small before the optimum
is reached. Polenova and colleagues devised a similar strategy,
maximum entropy interpolation (MINT) [15], that employs con-
ventional MaxEnt codes while setting the constraint parameter
to a small value, much smaller than the estimated noise. Similar
to FM, MINT yields highly linear spectra from NUS data, suitable
for quantitative analysis, but takes advantage of highly efficient
and robust MaxEnt code, ensuring both uniqueness of the solution
and convergence.
2.5.7. Iterative thresholding, minimum l1-norm, and compressed
sensing

MaxEnt reconstruction uses a regularization functional – the
entropy – to produce smooth spectral estimates with minimal
Fig. 9. Comparison of a spectrum obtained using uniform sampling and conventional DFT
indirect dimension (the same experiment time) using NUS and FM processing (right). A
artifacts. A number of different approaches to spectrum estimation
that on the surface appear quite dissimilar have in common a reli-
ance (either implicit or explicit) on a regularization functional that
shares some of the properties of the entropy. The functional these
approaches have in common is the l1-norm, or the sum of the abso-
lute magnitudes of the elements of the spectrum. Regularizing
spectral estimates by minimizing the l1-norm (note the sign differ-
ence from the entropy) is a characteristic of a class of fixed-point
methods that use iterative thresholding, first applied to image pro-
cessing problems [95], in which spectral (image) values below a
threshold are set to zero (hard thresholding) or scaled down (soft
thresholding). Though the connection to the l1-norm is not obvi-
ous, it was shown that iterative soft thresholding with replacement
minimizes the l1-norm [96]. More explicit uses of l1-minimization
have become popular due to a remarkable theorem due to Logan
[97] that states that the spectrum of a signal can be perfectly recov-
ered from an incomplete and noisy set of samples – provided that
the signal is bandlimited, the noise is below some threshold,
and the spectrum to be recovered is sparse (i.e. has few nonzero
elements) – by minimizing the l1-norm.
processing (left) with a spectrum obtained using the same number of samples in the
dapted from Fig. 1 of Hyberts et al. [94]. Reprinted with permission.
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The concept behind iterative thresholding methods, which have
a rich history in the field of image processing [95,98], is simple:
starting with time domain data (which falls on a Nyquist grid),
set the values for points not sampled to zero, then compute the
DFT. In the frequency domain, choose a threshold that is below
the value of the largest peak in the resulting trial spectrum, and
scale down (iterative soft thresholding, or IST) values above the
threshold by subtracting the threshold from their values, or set
to zero [99] all spectral values below this threshold (hard thres-
holding). Then compute the inverse DFT of the thresholded spectral
estimate. These methods are called fixed-point methods because in
general the same operation is repeatedly applied to the data until
the changes become small, lowering the value of the threshold
with each iteration. While iterative thresholding methods mainly
have been developed ad hoc, formal results are possible for soft
(but not hard) thresholding: the fixed point of soft thresholding
minimizes the l1-norm of the spectrum [96]. IST is thus closely
related to the compressed sensing approach (which explicitly seeks
to minimize the l1-norm) recently applied in magnetic resonance
imaging and subsequently to NMR [47,100,101]. A problem fre-
quently encountered with fixed-point methods is that the step size
with each iteration can become vanishingly small before the result
has minimal l1-norm [96]. The choice of thresholding schedule can
impact the convergence rate, for good or ill. Although utilitarian
rules-of-thumb have been offered [94], there appears to be little
evidence to support the existence of an optimal or universal thres-
holding schedule.

A more fundamental question posed by compressed sensing
and IST is whether the l1-norm functional is well-suited for regu-
larizing NMR spectra. The assumptions attending Logan’s Theorem
are that the signal is band-limited, sparse, and contains bounded
noise. Lorentzian lineshapes, however, are not band-limited: their
tails extend to infinite frequency (or wrap around in the case of the
DFT). Furthermore, in contrast to MRI, where signals are typically
confined to a single voxel in the image, NMR signals usually span
multiple frequency values. Thus NMR spectra may not fully satisfy
the requirements for robust recovery from sparse data. Anecdotal
evidence that calls the suitability of the l1-norm into question is
shown in Fig. 10 [96]. The top panel (A) show a one-dimensional
spectrum computed using l1-norm minimization, the bottom panel
(B) shows the spectrum computed from the same data using
MaxEnt reconstruction. Both are constrained to match the input
time-domain data, with the same level of agreement. The peaks
highlighted by the red oval correspond to a single synthetic
exponentially-decaying sinusoid added to the experimental data.
Fig. 11. IST spectral reconstruction from NUS data illustrating the non-Gaussian
(spiky) noise distribution. Adapted from Fig. 3 of Hyberts et al. [94]. Reprinted with
permission.
MaxEnt reconstruction correctly returns a single peak, while the
l1-norm spectrum yields artifactual splitting of the single Lorenz-
tian. It has been suggested that this is a result of IST-based meth-
ods not being suitable for extrapolation of the signal, i.e. where the
time-domain data corresponding to the reconstructed spectrum
contains data beyond the last experimentally-sampled data point
[102]. This further restricts the design of sampling schedules
where low sampling density at long evolution times may result
in such instabilities [102]. Other features of IST (l1-norm) spectra
that remain unexplained include non-Gaussian noise distributions,
which are for example readily apparent in Fig. 11 [94]. Similar non-
Gaussian noise distributions can arise with MaxEnt reconstruction
when the parameter def is too small [2]. Fundamentally the differ-
ences between IST and MaxEnt spectra are a manifestation of non-
linearities inherent in these non-Fourier methods, which can
depend not only on the methods themselves but also the nature
of the signals to which they are applied. While this remains an
active area of research, it is bears emphasizing that error analysis
is important when utilizing non-Fourier methods of spectrum
analysis.

2.5.8. Spectroscopy by integration of frequency and time information
A predecessor to IST was a class of iterative hard thresholding

algorithms devised for image processing by Papoulis [98], Jansson
[103,104], van Cittert [95], and others. The basic idea is to itera-
tively update an image (or spectral estimate) by suppressing infor-
mation in ‘‘black’’ regions of the image (or blank regions of the
spectrum) while replacing values in the conjugate Fourier domain
with empirical data. Herzfeld and colleagues applied this idea to
spectrum analysis by iteratively thresholding parts of the spectrum
that are believed to be ‘‘blank’’ [105]. While the results can be dra-
matic, the use of hard limits to the thresholded region makes it dif-
ficult to derive formal results that would elucidate the nature of
the solution. As with other fixed-point methods, detecting prema-
ture convergence can be problematic. Because Lorentzian peaks are
not bounded, ‘‘leakage’’ into the thresholded regions is a potential
source of artifacts or bias.

2.5.9. MDD
Multi-dimensional decomposition (MDD) was introduced to

NMR as three-way decomposition and has also been referred to
as multi-way decomposition [56]. MDD is related to methods such
as factorial analysis, principal component analysis (PCA) and singu-
lar value decomposition (SVD). The aim is to find a set of one-
dimensional vectors that best describe the experimental data (Eq.
(5)). The assumption is that the multidimensional signal (in either
the time or frequency domain) can be described as a sum of the
vector outer products of independent one-dimensional ‘‘shapes’’,
e.g. for three dimensions:

Si;j;k ¼
XR

m¼1

AmF1m
i � F2m

j � F3m
k þ ei;j;k ð5Þ

Here S is the measured signal at coordinates (i, j, k), e is the noise
component at those coordinates, and A is a diagonal matrix contain-
ing the intensity of each signal component. F1–F3 are the normal-
ized one-dimensional vectors describing each component (often
referred to as shapes) along each of three dimensions, but the
method can be extended to any dimensionality greater than 2.
The vectors may be either in the time or frequency domain or a mix-
ture (i.e. the decomposition can be applied to a mixed time–
frequency data, e.g. an interferogram). From the above it should
therefore be possible to describe the data using R � (i + j + k � 2) val-
ues (the sum of the lengths of the three one-dimensional vectors,
less 2 because one value belongs to all thee vectors) and, so long
as the size of the measured dataset is much larger than this value,
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the data is over-determined and can therefore be solved using a
least squares approach. In practice the number of expected signals,
R, is a user-defined parameter, which in essence sets the noise
threshold. Furthermore, a parameter k is defined that penalizes
large amplitude components, ensuring that large amplitude compo-
nents that cancel out are not kept. The results are not very sensitive
to the value of R, so long as it is set to a value slightly larger than the
expected number of peaks. Regularization via k is important in
cases where the data suffers from low SNR or in strongly overlapped
regions [106]. A feature of this method is that even if some values of
S are unknown, but sufficient information is available, the vectors
F1–F3 can still be calculated. These components will be complete
and can be used to reconstruct a complete dataset. The method
can therefore be applied to NUS data. There is, however, an inherent
limitation on the amount of data that can be omitted before the
least squares problem becomes intractable. To improve on this lim-
itation, the algorithm has recently been extended to assume that
the time domain signal has autoregressive properties, i.e. to assume
Lorentzian lineshapes [107]. Removing a variable reduces the num-
ber of unknowns, allowing for larger portions of the data to be omit-
ted, but as always this is only true if the assumption is correct (see
also Section 2.3). This new implementation of the method is
referred to as recursive MDD (rMDD) [108].

2.5.10. Covariance NMR
Covariance NMR was introduced as alternative to spectral

analysis (e.g. FT) for identifying coherences in the indirect
dimension of 2D NMR experiments [109]. It has subsequently
been expanded as a general approach for correlating any exper-
iments that have certain symmetry properties [109]. The method
in its simplest form uses the fact that processing of 2D spectra
involves FT of one dimension, which produces a set of 1D data-
sets all in the frequency dimension along the first dimension but
representing different time points along the second dimension.
The modulation of each signal is dependent on its correlated
partners. Instead of applying the FT along the second dimension,
one can simply ask which frequencies are modulated in a corre-
lated way. A correlation is then calculated for each pair of fre-
quencies; this has the important property that, since the result
is a matrix containing correlation information between every
frequency pair, the indirect frequency dimension has the same
digital resolution as the direct dimension, regardless of how
many time increments were actually acquired along the indirect
dimension. If the operation is, for example, performed on a sin-
gled 1D spectrum the result is a 2D spectrum with correlations
between all frequencies that contain a signal. The number of
samples acquired in the indirect dimensions does therefore not
affect the apparent resolution of the spectrum, instead as addi-
tional samples are collected in the indirect dimension the inten-
sity of the ‘‘false’’ correlations will be reduced in relation to
those at ‘‘true’’ correlations. One of the interesting properties
of this treatment of NMR data is that the data does not need
to be uniformly sampled, and NUS data can be used. Indeed,
the data may be modulated by any variable that affects correla-
tions. Recent extensions to the original method enable applica-
tion to heteronuclear correlations (and thus unsymmetrical
spectra) through indirect covariance [110]. This extension, how-
ever, requires the correlation of two (or more) two-dimensional
spectra that have one dimension in common, e.g. a 1H–13C HSQC
and a 1H–1H TOCSY. In this example one would be able to
extract correlations describing all protons in each carbon spin
system. This requires additional filtering and spectral manipula-
tion as it is prone to false positives and requires the input spec-
tra to match well (i.e. it assumes negligible chemical shift
differences due to pulse sequence-dependent sample heating,
etc.) [110].
3. Non-Jeener experimental methods for speeding up data
acquisition

All the experimental methods for performing multidimensional
experiments discussed thus far elicit coherences by parametric
sampling of the indirect dimensions – repeating a one-dimensional
experiment while varying delays (the parameters) corresponding
to the indirect dimensions – still adhering to the Jeener paradigm
employed by conventional uniform-sampling multidimensional
FT methods, but using NUS for the parametric sampling of the indi-
rect dimensions. These methods can all be applied to existing NMR
pulse sequences with little or no change to the pulse program.
However, alternative approaches to speeding up multidimensional
NMR have also emerged that do not exploit NUS. Some fundamen-
tally change the way coherences in dimensions beyond the acqui-
sition are elicited. Most of these methods involve significant
changes to pulse sequences or even to the spectrometer hardware.
Some of the methods can be combined with the NUS methods
described above to enable further increases in speed.

3.1. Hadamard spectroscopy

The idea of Hadamard spectroscopy [111] is to use a set of fre-
quency-selective pulses to excite only those parts of the frequency
domain that contain signals of interest. In some sense this resem-
bles the continuous-wave method used in early NMR spectrome-
ters. In practice multiple discrete frequencies are irradiated in
the same experiment and the frequencies are encoded by a Had-
amard matrix in which the phase of the pulses is varied (not unlike
the G-matrix). In this manner each individual frequency is given a
different phase. This spectrum will be highly distorted due to the
variable pulse phases. However, if the procedure is repeated n
times so that the phases of all individual frequencies are varied
in such a way that each can uniquely be identified, the resulting
n spectra can be combined to produce a conventional spectrum.
The matrix is decoded using the Hadamard matrix (which contains
the relevant information regarding the phase of each component in
each experiment) to reveal individual frequency components.

3.2. Single scan NMR

Conventional multidimensional NMR experiments subject the
entire sample to the same manipulations by RF or magnetic field
gradient pulses. In single scan experiments, pulsed field gradients
are used to physically divide the sample into spatially-distinct sub-
sets that are subjected to different evolution times [112]. Provided
that there are sufficient spins in each subset of the sample to elicit
a detectable response, this permits parametric sampling of one or
more indirect dimensions in space, rather than time. In this way
a complete 2D dataset can be acquired in a single scan. As spec-
trometers continue to improve in sensitivity, we anticipate that
these methods will find increasing application.

3.3. SOFAST

Band-Selective Optimized Flip-Angle Short-Transient (SOFAST)
[113] experiments (later also referred to as BEST experiments
[114]) speed data acquisition by reducing the relaxation delay
required in most NMR experiments. The relaxation delay is used
to restore the spin system to equilibrium prior to repeating the
experiment (whether for collecting multiple transients, or during
parametric sampling of an indirect dimension). The relaxation
delay is often a second or longer, and is thus the most time-con-
suming step in most multidimensional experiments. SOFAST
exploits two concepts in reducing the relaxation delay. The first
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is the fact that the less the spins are perturbed the less time it will
take for them to be restored to their equilibrium state. For a given
relaxation delay, there is an optimal tip angle that will elicit the
largest time-averaged signal-to-noise ratio; this angle is referred
to as the Ernst angle [50]. Second, if a source of non-perturbed
1H spins is present during the observation of (other) 1H spins, in
large molecules (outside the extreme narrowing region) these will
serve to efficiently relax the spins under observation due to cross-
relaxation (NOE effect). This effect is more pronounced for larger
proteins due to spin diffusion. For proteins the aliphatic protons
can be used as the source of unperturbed spins by applying shaped
pulses in the low-field NH region. Combining these two principles,
the SOFAST technique is able to reduce the relaxation delay by an
order of magnitude, allowing more parametric sampling of the
data in a given time. SOFAST and BEST approaches are compatible
with NUS [29,115].

3.4. Conclusions and outlook

The confluence of improvements in magnets, probes, and com-
putational power has contributed to an explosion of novel
approaches for reducing the time required to obtain multidimen-
sional NMR spectra through non-uniform sampling.

NUS provides a means by which the precious (and expensive)
instrument time dedicated to acquiring multidimensional NMR
spectra can be tailored for the sample conditions and the required
information. In the sampling limited regime where high-sensitivity
is available (high-sample concentration, cryogenic probe, etc.) the
spectroscopist can through NUS dramatically reduce the experi-
ment time compared to achieving the same resolution using tradi-
tional sampling. Evidence from the literature shows that NUS can
in extreme cases be used to acquire 4D spectra by sampling less
than 1% of a time-domain, which would require months of acquisi-
tion time using traditional sampling [93]. In the sensitivity-limited
regime where low SNR poses difficulties in uncovering important
correlations (e.g. due to poor solubility of samples at high-concen-
trations) NUS can be used to improve the SNR per unit time com-
pared to traditional sampling, instead of reducing experiment time.

Regardless of the sampling regime, the gains that can be
achieved employing NUS are closely tied to the ability of the
method of spectrum analysis employed to suppress sampling arti-
facts. It is therefore not surprising to find that researchers have
intensely investigated a multitude of novel methods for processing
NUS data. Each new method (over 10 in the past decade) intro-
duces new terminology, concepts, and acronyms, which unfortu-
nately has contributed to poor penetration of some of the new
methods. The situation is exacerbated by the relative dearth of
quantitative comparisons of competing methods, so it is the joint
responsibility of spectroscopists and method developers to ensure
that these methods are critically compared through application to
real-world problems. Thus far, most of these methods have been
applied mainly to highly sensitive experiments on protein samples
with relatively high concentrations of 1–3 mM. Most proteins can-
not be concentrated to anywhere near such levels, and the known
favorable properties of ubiquitin hardly make this a challenging
benchmark sample.

If trends of the past decade hold, then the development of still
more methods can be anticipated. To assess the utility of any new
method for NMR data acquisition and processing two fundamental
questions must be addressed: when does the method break down
(i.e. due spectral crowding or low signal-to-noise ratio) and how
does the method break down (i.e. what is the nature of any arti-
facts, and how accurate is the method in terms of false positives,
false negatives, and amplitude and frequency?). While there have
been some notable attempts to address these questions for the
methods described here, there is still much to learn. The qualitative
comparisons offered here serve as a prelude to more quantitative
critical comparisons that remain sorely needed.
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