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ABSTRACT: The time required to complete a multidimensional NMR experiment is

directly proportional to the number of evolution times sampled in the indirect dimen-

sions. A consequence when utilizing conventional methods of data acquisition and spec-

trum analysis is that resolution in the indirect dimensions is frequently sample-limited.

The problem becomes more acute at very high magnetic fields, where increased chemical

shift dispersion requires shorter time increments to avoid aliasing. It has long been rec-

ognized that a way to avoid this limitation is to utilize methods of spectrum analysis that

do not require data to be sampled at uniform intervals, permitting the collection of data

at long evolution times requisite for high resolution without requiring collection of data

at all intervening multiples of the sampling interval. Several promising methods have

evolved that are seemingly quite different, yet can be shown to yield similar results

when applied to similar sampling strategies, emphasizing the importance of the choice of

samples, regardless of the technique used to compute the spectrum. Maximum entropy

(MaxEnt) reconstruction is a very general method for spectrum analysis of nonuniformly

sampled data (NUS), and because it can be used with essentially arbitrary sampling

strategies and makes no assumptions about the nature of the signal, it provides a con-

venient basis for exploring the influence of the choice of samples on spectral quality. In

this article we use this versatility of MaxEnt reconstruction to compare different

approaches to NUS in multidimensional NMR and suggest strategies for improving spec-

tral quality by careful choice of sample times. � 2008 Wiley Periodicals, Inc. Concepts

Magn Reson Part A 32A: 436–448, 2008.
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INTRODUCTION

Applications of NMR spectroscopy continue to

expand as high field magnets and cryogenic probes

attain ever higher levels of sensitivity and resolution

(1). Yet for many applications, the additional resolu-

tion afforded by resolving resonances along multiple

dimensions remains essential. This is especially

important for biomolecular NMR, where there is a

growing need to investigate larger and more complex

molecules and molecular assemblies. Along any

dimension the frequency resolution is closely related

to the length of the time domain data record. Because

the time required to complete a multidimensional

experiment is directly proportional to the number of

samples collected in the indirect dimensions, obtain-

ing high resolution in the indirect dimensions can

require impractically long experiments. The problem

becomes more acute at high magnetic fields, where

increased spectral dispersion necessitates shorter

intervals between samples and thus more samples to

achieve long evolution times.

It has been recognized for some time that a key

factor limiting resolution along the indirect dimen-

sions of multidimensional experiments is the require-

ment that samples be collected at uniform intervals, a

requirement imposed by the discrete Fourier trans-

form (DFT) and methods such as linear prediction

(LP) extrapolation (2). Recently several different

approaches to overcome this obstacle have been

developed. Although they use different methods to

compute the multidimensional spectrum from time

domain data, they all relax the requirement that sam-

ples be collected at uniform intervals (3–16). We

refer to this general approach as nonuniform sam-

pling (NUS). NUS enables collection of data at long

evolution times, and thus affords high frequency re-

solution without imposing the time consuming bur-

den of collecting long data records.

While the different methods used to obtain the

spectrum from NUS data exploit fundamentally dif-

ferent mathematics, it has recently been shown that

the features of the reconstructed spectrum are pre-

dominantly influenced by the NUS strategy

employed and not by the specific processing tech-

nique (17, 18). This suggests that insights into the

design of efficient NUS strategies obtained using one

processing method should in principle be applicable

to the other approaches. Here we have chosen to use

maximum entropy (MaxEnt) spectral reconstruction

as the means for computing multidimensional spectra

from NUS data, but our emphasis will be on the

influence of different NUS strategies on the spectra.

Although experimental noise constitutes a fundamen-

tal limiting factor confronting all methods of spec-

trum analysis in NMR, our focus here is on the sam-

pling artifacts, or sampling noise, that is invariably

introduced by NUS. Before introducing various NUS

strategies and MaxEnt, however, we briefly review

the fundamentals of uniform sampling.

UNIFORM SAMPLING

In the seminal development of pulsed Fourier trans-

form NMR by Ernst and Anderson (19), the response
of a nuclear spin system to an RF pulse is the free

induction decay (FID). Sampled at uniform time

intervals, DFT yields the frequency spectrum. The

Nyquist sampling theorem states that a wave must be

sampled at least twice per cycle in order to be com-

pletely characterized (20). The sampling interval or

dwell time Dt determines the highest frequency that

can be unambiguously determined (21). This fre-

quency range is referred to as the spectral width SW

and for single-phase detection is equal to one-half

the reciprocal of the dwell time; for quadrature phase

detection, in which components 908 out-of-phase

with respect to each other are sampled simultane-

ously, SW is the reciprocal of the dwell time. A sig-

nal with a frequency higher than SW will appear in

the DFT spectrum at an incorrect frequency. This

phenomenon, called aliasing or folding, will be fa-

miliar to any viewer of old western movies in which

wagon wheels appear to reverse direction as they are

slowing down (21). This is demonstrated in Fig. 1

where a signal with a frequency inside the spectral

window can not be distinguished from a signal with a

frequency shifted higher by an amount equal to SW.

The location of aliased frequencies depends on an

additional detail of the sampling, namely whether

and how phase-sensitive data acquisition is employed

(22).
Another important aspect of sampling is the length

of time that a signal is sampled. The longer a signal

is allowed to evolve, the easier it is to resolve

components with similar frequencies. This is illus-

trated in Fig. 2, where it is apparent that two sinu-

soids with similar frequencies are more readily dis-

tinguished at long evolution times. A complicating

factor is that when sampling data containing decay-

ing signals, at long evolution times the contribution

of noise will eventually swamp the contribution from

the signals. At this point no further information about

the signals can be extracted. The signal-to-noise ratio

(S/N) of an experiment thus determines how many

sample points can be acquired before the signal
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begins to vanish below the noise. It has been shown

that the point of diminishing returns where collecting

additional data samples begins to degrade S/N in the

spectrum is 1.5T2* (3, 23). The need to avoid alias-

ing while acquiring data at long evolution times

imposes a dual constraint on data collection; on the

one hand closely spaced sample points are required

to avoid aliasing and on the other hand samples at

long evolution times are required to distinguish simi-

lar frequencies.

For multidimensional experiments in which S/N is

sufficiently high to preclude signal averaging, the

principal determinant of the time required to perform

an experiment is the number of samples collected

along the indirect dimensions, sometimes referred to

as the ‘‘sampling limited’’ regime (24). There are two
broad classes of approaches for reducing the time

cost of obtaining high resolution in the indirect

dimensions. One class employs methods capable of

obtaining high-resolution spectra from short, uni-

formly sampled data records, such as linear predic-

tion (LP) extrapolation and the filter diagonalization

method (19). The other class, the focus of this work,

employs NUS.

Several different strategies for NUS have been

applied in NMR. In a seminal work, Barna et al.

introduced the concept of random sampling biased to

match the exponential decay of the signal envelope

(26). More recently, reduced dimensionality (RD)

(12, 27), back-projection reconstruction (BPR also

known as PR) (28), G-transform Fourier transform

(GFT) (11), and projection decomposition (5) meth-

ods have been introduced which share a common

strategy for NUS that involves coupled evolution

times. This results in sampling along radial vectors in

time. While NUS approaches based on radial sam-

pling typically utilize methods for computing the fre-

quency spectrum that are restricted to this special

sampling strategy (e.g. BPR and GFT), in general it

is possible to dissociate the strategy used to imple-

ment NUS from the method used to compute the

spectrum from NUS data. Methods of spectrum anal-

ysis that are applicable to essentially arbitrary NUS

strategies include Bayesian (29), maximum likeli-

hood (MLM) (14), MaxEnt reconstruction (25, 30),
forward maximum entropy method (31), iterative

thresholding or minimum l1-norm reconstruction

(32), nonuniform DFT (16), and multidimensional

decomposition (13). It has been demonstrated that

spectra obtained from NUS data depend mainly on

the NUS strategy employed, and to a much lesser

extent on the method used to compute the spectrum

(17). Thus insights gained into the influence of NUS

strategies on spectral quality derived using one

method will be broadly applicable to other methods

of spectrum analysis. In this work we employ Max-

Ent reconstruction, because it is more general than

the other approaches inasmuch as it makes no

assumptions about the signals (and thus it is applica-

ble to experiments giving rise to arbitrary line-

shapes), is applicable to experiments of arbitrary

dimension (including one- and two-dimensional), and

very efficient algorithms exist (21, 33).

NUS AND SAMPLING ARTIFACTS

Any NUS scheme introduces spectral artifacts as a

direct result of the excluded data. Such ‘‘sampling

artifacts’’ are the major drawback of using NUS

methods. While all methods of spectral analysis, with

the exception of nuDFT, to some extent attempt to

Figure 1 A sinusoid with frequency o (dotted line) will

appear to have a lower (aliased) frequency (bold line)

when sampled at an interval corresponding to a spectral

width smaller than o. Here the dotted sinusoid is sampled

at an interval corresponding to SW ¼ F > o. Using every

other sample results in SW ¼ F/2 < o. [Color figure can

be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 2 The ability to distinguish two sinusoids with

similar frequencies depends on the longest evolution time.

[Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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mitigate sampling artifacts, minimizing these arti-

facts can be achieved by proper design of the sam-

pling scheme. To design such schemes it helps to

have a basic understanding of the artifacts. The con-

volution theorem (34), which holds that the spectrum

of a time series obtained from point-by-point multi-

plication of two separate times series is equivalent to

the convolved spectra of the individual time series

enables an insightful analogy.

Consider a one-dimensional FID sampled at N
regular intervals according to the Nyquist criterion.

We define a NUS sampling scheme to be a subset of

M < N samples. Since each of the M samples falls at

one of the time intervals characteristic of uniform

Nyquist sampling, we refer to this approach as on-

grid NUS (we will show later that any off-grid sam-

pling scheme can be reasonably approximated by an

on-grid scheme). Now consider a discrete sampling

function defined on the Nyquist grid that has the

value 1 for each sample that is in the NUS subset and

zero for samples not in the set. The problem of

recovering the spectrum from NUS data can then be

considered as the problem of deconvolving the spec-

trum of the sampling function, which is called the

point spread function (PSF), from the true spectrum

of the signal. This follows from the convolution theo-

rem, and is illustrated in Fig. 3. When the signal con-

tains a single frequency component, as shown in the

example, it is easy to predict where the sampling arti-

facts will appear and their relative intensities by

examining the PSF; they will appear at the same fre-

quencies relative to the one frequency component as

peaks in the PSF are relative to the zero-frequency

component of the PSF. When the signal contains

more than one frequency component, the sampling

artifacts around one frequency component can inter-

fere, constructively or destructively, with sampling

artifacts from other frequency components, or with

other frequency components themselves.

The example shown in Fig. 3 uses the DFT to

compute the spectrum. The application of the DFT to

on-grid NUS data where the evolution times not

sampled are set to zero is an application of nuDFT.

Figure 3 The DFT of a decaying sinusoid (A, B) and a sampling schedule (C, D) and their

multiplication in the time domain (E) resulting in their convolution in the frequency domain (F).
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Using more advanced methods that attempt to decon-

volve the PSF from the spectrum the sampling arti-

facts can be dramatically reduced, but as we shall see

their locations and amplitudes relative to each other

are usually preserved.

Based on the analogy with convolution, a sam-

pling schedule that gives rise to a PSF containing

weaker nonzero frequency components will give rise

to smaller sampling artifacts. A simple way to

achieve smaller sampling artifacts is to collect more

samples. This comes at the expense of increased

experiment time, of course. For a given NUS set size,

different arrangements of the sample times result in

different PSFs, and thus different sampling artifacts.

Faster decay of the sampling density (collecting more

data at short times) will yield stronger but broader

signals. Conversely, slower decay will yield noisier

spectra but sharper lines (Fig. 4). The distribution of

the sample points in time governs the manifestation

of these artifacts in the spectrum.

The interference of sampling artifacts results from

nonorthogonality of the complex exponentials over a

set of nonuniformly spaced times. The discrete Fou-

rier transform is an expansion in a set of basis func-

tions consisting of the complex exponentials e�2pikn/N

(21). The complex exponentials have the important

property of orthogonality,

XN�1

n¼0

e2piðk�k0Þn=N ¼ 0; k 6¼ k0 [1]

which means that when data is sampled uniformly

the complex exponentials with frequencies 2pk and

2pk0 are independent of one another. For NUS, how-

ever, some of the terms in the sum of Eq. [1] are left

out (or equivalently, set to zero), and the complex

exponentials are no longer orthogonal. Thus one way

to view NUS sampling artifacts is that frequencies in

the spectrum are no longer fully independent of one

another.

Characteristics of Sampling Artifacts

The previous section showed the distribution of sam-

pling artifacts for a zero frequency signal. In the gen-

eral case of a complex but band-limited signal, each

peak will produce a set of artifacts that have the same

relative frequencies as peaks in the PSF of the sam-

pling schedule. Thus in principle the positions of the

sampling artifacts can be determined if all ‘‘true’’ sig-

nals are known a priori. While the relative frequencies

and relative amplitudes of the artifacts can be esti-

mated from the PSF, their absolute amplitudes also

depend on the intensity of the signal components.

They are further in direct proportion to the signal in-

tensity and the extent of interference from sampling

artifacts arising from other signal components (Fig. 5).

For linear methods of spectrum analysis, the artifacts,

like the signals, are strictly additive. For nonlinear

methods, such as MaxEnt, sampling artifacts and

signals will be subject to the same nonlinearities.

An example illustrating the interference that

results from NUS is shown in Fig. 6. Here the

variation in peak amplitude in nuDFT spectra com-

puted from NUS time domain data when one of the

peak frequencies is varied while the other peak is

fixed is apparent. One way of shifting some of the

sampling artifacts to extreme values is to select a

NUS set from an oversampled grid (with a grid spac-

ing shorter than required by the Nyqusit theorem), or

by sampling at completely random intervals (i.e. not

restricted to a uniform grid defined by multiples of a

fixed dwell time). The former is illustrated in Fig. 7.

Note that the Nyquist theorem does not hold for NUS

Figure 4 nuDFT of a noiseless, synthetic decaying sinusoid using three different sampling

schedules (see also Fig. 3). The sampling schedule is shown in the top left of the panels, where

the upper row indicates sampled data points and the lower row indicates those that were not

sampled. The decay rate of the sampling schedule increases from A to C, yielding a decrease in

sampling artifacts and an increase in linewidth.
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data, and the phenomenon of aliasing is more com-

plex; for example it is frequency-dependent, and the

amplitudes of aliased peaks need not match the ampli-

tude of the true signal.

Dynamic Range

Since the amplitudes of sampling artifacts are a pro-

portional to the amplitudes of the associated signal

peaks, it follows that a signal containing components

with widely varying amplitudes, or a high dynamic

range, will present special challenges to NUS. The

sampling artifacts due to one peak may introduce

ambiguities in the spectrum that exceed the magni-

tude of weaker peaks in the spectrum (Fig. 8). For

linear methods of spectrum analysis methods such as

nuDFT, one can determine a priori the limiting

dynamic range for which artifacts arising from a

given NUS scheme will obscure weak peaks by com-

paring the magnitude of the largest nonzero peak in

the PSF relative to the magnitude of the zero-

frequency component; the ratio gives the limiting

dynamic range. For methods that attempt to decon-

volve PSF from the spectrum (35), more subtle tests

must be applied.

MaxEnt and NUS

In the examples presented thus far we have utilized

nuDFT to compute spectra for NUS data. While nuDFT

serves as a convenient pedagogical tool for understand-

ing the origin and nature of NUS artifacts, there are

several other methods that are better suited to NUS

because they effectively attempt to deconvolve the

NUS PSF from the spectrum. An especially versatile

approach that we will employ here is MaxEnt recon-

struction. The theory and general properties of MaxEnt

reconstruction have been reviewed in detail (36).
Derived using information-theoretic principles,

MaxEnt reconstruction is often described as yielding

the spectrum containing the least amount of informa-

tion consistent with the measured data. We take a

somewhat more pragmatic view in describing Max-

Ent reconstruction as a method that uses entropy as a

regularizer to yield smooth spectra that are consistent

with the measured data. Empirically and theoretically

it can be shown that this smoothing is nonlinear:

peaks in the MaxEnt spectrum are scaled down, but

smaller peaks are scaled down more than larger

peaks (30). A consequence of this property is that

MaxEnt reconstruction is more likely to result in

false negatives (missing peaks) than false positives.

Our understanding of the nature of the nonlinearities

in MaxEnt spectra stands in contrast to the relatively

poorly understood nonlinearities associated with

other methods of spectral analysis for NUS data. This

understanding has enabled techniques for minimizing

nonlinearity [such as FM (31)] and for compensating

for its effects (30). In applications where linearity

Figure 5 Sampling artifacts, like signals, are additive.

Panel A shows the overlay of two different nuDFT spec-

tra, each containing a single frequency component. Panel

B shows the nuDFT of the sum of the two NUS data sets.

[Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 6 nuDFT spectra of two sinusoids where the frequency of one is held fixed and the

other progressively shifts (panel A to C), showing that both the amplitudes of the artifacts and

the peaks are modulated by the shifting peak.
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is required, it is important to take appropriate steps

to minimize the nonlinearity or compensate for it

(30, 37).
The improvements that can be achieved with

MaxEnt are demonstrated in Fig. 9. While the sam-

pling artifacts are greatly reduced compared to the

nuDFT spectrum, they are still present in the loca-

tions predicted by convolution of the NUS PSF with

the true spectrum. The smoothing effect of MaxEnt

on NUS artifacts is not merely cosmetic, however, as

it diminishes sampling artifacts without suppressing

real peaks. This is demonstrated in Fig. 10, where

constructive interference from the sampling artifacts

of four strong peaks obscure a fifth weaker peak in

the nuDFT spectrum, whereas the MaxEnt spectrum

efficiently reduces the artifacts without suppressing

the real peak.

The ability of MaxEnt to eliminate NUS artifacts

is ultimately limited by the presence of noise (which

is absent in these examples). For very low noise lev-

els and data with low dynamic range it may be possi-

ble to make them effectively vanish by tuning the

parameters controlling MaxEnt reconstruction. Rarely

are these conditions met in practice, however, and

completely noise-free and flat baselines are then usu-

ally a sign of over-regularization (38).

nD NUS

One-dimensional NUS illustrates some of the general

properties of NUS, but the 1D case (i.e. NUS in the

indirect dimension of a 2D) has attributes that render

it less attractive than multidimensional NUS. One is

that NUS artifacts, when applied to a single dimen-

sion, exhibit column-wise coherence in which sam-

pling artifacts in adjacent columns reinforce one

another, enhancing the likelihood they will be

detected as false positives (3). In addition, the time

saving afforded by 1D NUS are typically modest. 2D

NUS (e.g. the two indirect dimensions of a 3D

Figure 7 Effect of oversampling. The top panel shows the two peaks and their associated sam-

pling artifacts and the middle and lower panels show the same peaks using 4X and 8X SW. The

sampling artifacts are shifted to extreme frequencies at the cost of line broadening.

Figure 8 Effective sensitivity of NUS data. Weak peaks in the presence of strong ones can be

masked by sampling artifacts associated with the larger peak. Note also the decrease in sampling

artifacts about the left peak as the right hand peak decreases in intensity (A–C).
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experiment) methods, on the other hand, avoid col-

umn-wise coherence and the time saving afforded by

NUS increases geometrically, i.e. as the product of

the time reductions along each dimension. Thus

high-dimensional experiments can be rendered prac-

tical by multidimensional NUS.

While multidimensional NUS retains many prop-

erties of one-dimensional NUS, there are other im-

portant differences. Before exploring these differen-

ces, we will explore the distinction between on-grid

and off-grid NUS.

The Nyquist Grid

We previously discussed that using the DFT the

Nyquist condition imposes the constraint that equi-

spaced time points must be sampled in order to avoid

aliasing. The interval between the data points is

determined by the band-width one wishes to unam-

biguously observe in the frequency domain (i.e. SW).

In two dimensions the same principle applies and one

must define SW in each dimension separately. The

resulting time points (equispaced in each dimension)

form a grid. We refer to this Cartesian grid as the

Nyquist grid, which defines the least dense set of

time-points required to reconstruct a 2D spectrum

free of aliases (see Fig. 11). The Fourier grid is the

frequency-domain grid derived from application of

the DFT to data sampled on the Nyquist grid.

In 2D, NUS sampling strategies can be described

as on-grid when a subset of the Nyquist grid is

sampled (similar to 1D NUS), or off-grid, when the

sample points fall off the Nyqusit grid. Radial sam-

pling employed by BPR, GFT, and RD methods in

general leads to data samples that do not fall on the

Nyquist grid. Spectra computed using these methods

are usually interpolated in some fashion onto the

Fourier grid. Bretthorst has pointed out, however,

that in principle it is possible to define a grid for an

arbitrary sampling scheme so long as the sample

times are specified with finite precision (29). The rel-
evant grid is determined by the greatest common

divisor (GCD) of the set of sample times, which is

usually much smaller than the Nyquist interval.

Regular and Irregular Sampling Schedules

An advantage of radial sampling is that along any

projection angle the data is sampled uniformly (Fig.

11), which permits the cross-section to be trans-

formed to the frequency domain using the DFT with-

out introducing sampling artifacts along the reduced

dimensionality axis. Sampling artifacts are invariably

present in the higher dimensional plane, however, as

the sampling is incomplete there (whether computed

by PR or MaxEnt, see Fig. 12). In PR these artifacts

are manifest as ridges in the back-projected spec-

trum. The relationship between back projection and

NUS has been further demonstrated by use of an

on-grid sampling schedule approximating off-grid ra-

dial sampling (17). The reconstructed spectrum using

either approach produces similar artifacts (Fig. 12).

This indicates that the ridges produced in PR are due

to the sampling scheme, not the reconstruction.

As demonstrated above, regular (e.g. radial) sam-

pling leads to coherent artifacts; it follows that by

sampling time points on the Nyquist grid using an

irregular scheme such artifacts should de-cohere.

Pseudo-random sampling is one way to produce

irregular sampling. It has been shown that the coher-

ent artifacts associated with regular sampling

schemes can be reduced through the introduction of

random ‘‘blurring’’ (18). This approach obviates the

use of BPR, however, and requires the use of a more

general method of spectrum analysis.

Figure 9 (A) nuDFT vs. (B) MaxEnt reconstruction of

the same data. The insert in B shows a 10-fold expansion

of the baseline.

Figure 10 MaxEnt of NUS data. Panel A shows the

nuDFT of five synthetic, noiseless signals. Panel B shows

the MaxEnt reconstruction of the same data. MaxEnt

reconstruction greatly diminishes the sampling artifacts

obscuring the smaller peak on the right hand side.
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Finally we show in Fig. 13 that when the data is

sampling limited, irregular sampling produces inco-

herent sampling artifacts that are much lower in in-

tensity than the coherent artifacts produced by regu-

lar NUS sampling. Since sensitivity is fundamentally

the ability to distinguish true signals from artifacts,

higher sensitivity will be obtained using fewer

sample points if they are irregularly spaced.

The reduction in sampling that can be achieved

using NUS depends on several factors, including the

dynamic range, S/N, sparsity, and dimensionality of

the signal, as well as the sampling strategy. Figure 14

illustrates that the gains typically increase geometri-

cally with the number of NUS dimensions. It is appa-

rent that for a single NUS dimension there is a dra-

matic increase in the amplitude of sampling artifacts

when the sampled subset represents between 40 and

20% of uniform sampling. For 2D NUS, the dramatic

increase occurs between 3 and 2%. The modest

increase with increased dimensionality in the number

Figure 12 Reconstruction of radially sampled data; off-grid sampled data reconstructed using

PR (left); and on grid sampling reconstructed using MaxEnt (right). The insets depict the

sampling scheme. [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Figure 11 Radial sampling (A) on-grid and (B) off-grid. Dots represent the Nyquist grid,

circles represent sampled data points. The solid lines indicate the angle of the radial vector

(projection axis). [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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Figure 13 HNCO spectra of ubiquitin. Top panels show the addition of 08, 908, and 308 projec-
tions of the two jointly sampled indirect dimensions at a proton chemical shift of 8.14 ppm,

reconstructed using back projection reconstruction. Each projection contains 52 complex points,

thus the total number of complex points sampled, from left to right is 52, 104, and 156. The

lower panel shows MaxEnt reconstruction using the same number of complex data points, dis-

tributed randomly along the nitrogen dimension (constant time) and with a exponentially

decreasing sampling density decay rate corresponding to 15 Hz in the carbon dimension. A 1D

trace at the position of the weakest peak present in the spectrum is shown at the top of each

spectrum (indicated by a dashed line). The insets depict the sampling scheme. The MaxEnt

reconstruction parameters were selected using an automated protocol (39, 40). [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com.)
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of samples required to faithfully reconstruct a spec-

trum, compared to the increase in the number of ele-

ments in the Fourier grid is a fairly general property

of nonlinear reconstruction methods, including not

only MaxEnt reconstruction, but minimum l1-norm
reconstruction, Bayesian, MLM, and MDD methods,

as well. These methods tend to perform well when

the spectrum is ‘‘nearly black,’’ that is there are rela-

tively few nonzero elements in the spectrum (also

called sparse support) (41). In essence the number of

unknowns (the amplitudes and phases of the signal

components) do not increase as the dimensionality of

the experiment increases. Thus rather dramatic

reductions in sampling, compared to the size of the

reconstructed spectrum, have been demonstrated for

5–10D experiments (5, 42, 43), rendering them feasi-

ble in reasonable amounts of acquisition time. In

contrast, for multidimensional experiments that are

information-rich (large number of unknowns) such as

NOESY spectra, much less dramatic reductions in

experiment time have been achieved (44).

Optimal Sampling

What constitutes an ‘‘optimal’’ sampling schedule

depends on the information sought from and con-

straints imposed by the experiment. We have already

seen that the choice of samples exhibits a familiar

sensitivity-resolution tradeoff, with sensitivity

enhanced by collecting more samples when the time

domain signal is strongest (usually at short times)

and resolution enhanced by sampling at longer times.

Irregular as opposed to regular sampling diminishes

sampling artifacts, and selecting samples from an

oversampled grid forces some sampling artifacts to

high frequencies, out of the band-limited spectral

window. Beyond these general observations, how-

Figure 14 HNCO spectra of ubiquitin. Top panels show projections on NUS MaxEnt spectra

onto the carbon dimension for the same plane as Fig. 13, using NUS along the carbon indirect

dimension and uniform sampling along the other dimensions. The NUS sets were selected using

exponential biased random sampling with a sampling density decay rate corresponding to 20 Hz,

and retaining 80, 60, 40, and 20% of the samples from the uniform Nyquist grid (100%, shown

in the left-most panel). Note the dramatic increase in sampling artifacts between 40 and 20%.

The bottom panels depict MaxEnt NUS spectra of the same plane, this time using NUS along

both the carbon and nitrogen indirect dimensions. The middle panels depict one-dimensional

traces through the plane at the frequency indicated by a dashed line on the contour plots. The

NUS sets were selected using fully random sampling in the (constant time) nitrogen dimension

and exponentially biased random sampling with a sampling density decay corresponding to 20

Hz in the carbon dimension. The NUS sets correspond to 3, 2, 1, and 0.5% of the samples from

the uniform Nyquist grid (shown in the left-most panel). For 2D NUS, the dramatic increase in

sampling artifacts occurs between 3 and 2%. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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ever, critical comparison of different approaches to

NUS is hampered by a present lack of consensus on

metrics for measuring performance and a lack of

common test data. Until such critical comparisons

are available, we are limited to offering a few general

and practical recommendations for exploiting NUS

in multidimensional NMR:

� Do not sample beyond 1.5T2*, unless you

have very concentrated samples > 1–5 mM;

sampling further reduces S/N (3, 45).
� A good compromise between sensitivity and

resolution is obtained by matching the sam-

pling density to the signal envelope. Higher

sensitivity can be achieved by devoting even

more samples to parts of the signal envelope

that are strongest. For exponentially decaying

signals we find a distribution that decays 2–3

times faster than T2* works well (45).
� Introduce irregularity, either by sampling from

a biased random distribution or by random

blurring (18).
� For experiments with high dynamic range

(greater than 20:1), or when you do not know

the dynamic range a priori, be conservative. Do

not expect to reduce sampling much beyond 1/

3rd of the samples on a Nyquist grid of compa-

rable resolution (maximum evolution time) for

each NUS time domain, i.e. about an order of

magnitude reduction for NUS in two dimen-

sions. However, for particularly sensitive experi-

ments or when signals are sparse much larger

reductions in sampling time are feasible (41).

CONCLUDING REMARKS

The advantages of NUS can be exploited by several

different approaches, but it is clear that NUS introdu-

ces ambiguities in the form of sampling artifacts,

regardless of the sampling strategy or method of spec-

tral reconstruction. Careful design of the sampling

strategy to minimize artifacts is thus essential in order

to realize the full potential benefit of NUS. Although

NUS artifacts may not be immediately apparent in

NUS schemes such as BPR and RD, these artifacts

will manifest if the higher-dimensional or ‘‘full’’ spec-

trum is reconstructed. Approaches such as APSY (7)
and HIFI (8) avoid reconstruction of the full spectrum

and attempt to resolve the ambiguities caused by NUS

artifacts through logical analysis of peak lists derived

from projected cross-sections, rather than from the

full spectrum. An advantage to spectral reconstruc-

tion, however, is that it is compatible with existing

spectral analysis and visualization software tools. A

final word of caution: the presence of sampling arti-

facts and the nonlinearity of methods of spectrum

analysis used with NUS data implies that S/N is no

longer a reliable indicator of sensitivity (38). Proper
error analysis to ensure that sampling artifacts and

nonlinearity are properly accounted for is paramount.
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